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Abstract

A major air pollution control sirategy in California in the 1990s has been the reformulation
of gasoline and diesel fuel to reduce vehicle emissions. A multi-year field study was
conducted in northern California at the Caldecott tunnel to assess the impact of reformulated
fuels on vehicle emissions, and to provide an updated characterization of gas and particle-
phase emissions from on-road vehicles.

The introduction of reformulated gasoline (RFG) in California led to large changes
in gasoline composition. The combined effects of RFG and fleet mmover between
summers 1994 and 1997 were large decreases in exhaust emissions of carbon monoxide
(CO), non-methane organic compounds (NMOC), and nitrogen oxides (NO,). Although it
was difficult to separate the fleet turnover and RFG contributions to these changes, it was
clear that the effect of RFG was greater for NMOC than for NO,. The effects of RFG on
emissions of toxic organics such as benzene and formaldehyde, and on the mass and
reactivity of evaporative VOC emissions were significant.

Per unit mass of fuel burned, heavy-duty diesel trucks emit about 5 times the NOy,
25 tmes more fine particle (PM3s) mass and 15-20 times the number of fine particles
compared to light-duty vehicles. Results of this study suggest that diesel vehicles in
California are responsible for nearly half of NO, emissions and greater than three quarters
of exhaust fine particle emissions from on-road motor vehicles. Diesel trucks were found
to be the major source of lower molecular weight polycyclic aromatic hydrocarbons (PAH),
but light-duty gasoline vehicles were found to be an important source of some higher
molecular weight PAH.  Size-resolved measurements were made to determine the
distribution of particulate PAH across the ultrafine and accumulation size modes.






Executive Summary

Motor vehicles are a major source of air pollution in California. Statewide emission
estimates for 1995 (ARB, 1997} indicate that on-road motor vehicles were responsible for
44% of reactive organic gas emissions, 60% of nitrogen oxide (NQOy) emissions, and 68%
of carbon monoxide (CO) emissions. In urban areas, motor vehicle emissions can account
for even larger fractions of total anthropogenic emissions. For example, in the San
Francisco Bay Area in 1995, motor vehicles were estimated to contribute 53% of reactive
organic gas emissions, 60% of NO, emissions, and 78% of CO emissions (ARB, 1997).
Many motor vehicle emission control strategies emphasize technological changes to
vehicles such as use of catalytic converters and exhaust gas recirculation. Another
approach to reducing vehicle emissions involves reformulation of fuels. Major
reformulations of both gasoline and diesel fuel occurred in California during the 1990s.

Reformulated Gasoline

California's reformulated gasoline (RFG) program was implemented in two phases; the
first phase took effect in 1992 and required a reduction in Reid vapor pressure to 7.8 psi
during the summer (high-ozone) season. Addition of detergent additives to gasoline and
the elimination of lead-based anti-knock compounds were also required in Phase 1 of
California's RFG program. Phase 2 of California's RFG program, which took effect
during the first half of 1996, required further modifications to fuel properties including:
reduction in Reid vapor pressure to meet a 7.0 psi limit; addition of oxygenated compounds
such as ethers or alcohols; reduction in benzene, aromatic, olefin, and sulfur content in
gasoline; and lower Tsq and Ty distillation temperatures.

Heavy-Duty Vehicles and Reformulated Diesel Fuel

Although heavy-duty diesel trucks represent only about 1% of all on-road vehicles in
California (ARB, 1996a), they contribute significantly to air pollution. California's motor
vehicle emission inventory model (MVEI 7G) indicates that in 1995, heavy-duty diesel
trucks were responsible for 21% of all NOx emissions and 75% of exhaust particulate
matter emissions from on-road vehicles statewide (ARB, 1996a). To reduce emissions



from diesel trucks, the following changes to diesel fuel composition were required starting
in 1993: sulfur content was limited to 0.05% by weight, and aromatic content was limited
to 10% by volume (ARB, 1988). Refiners in California developed alternative formulations
of diesel fuel with higher aromatic content that were less costly to produce while stll
providing equivalent emissions reductions (Nikanjam, 1993).

Research Objectives

The objectives of this research were to: (1) assess changes in CO, NOy, speciated
volatile organic compound, and gas-phase toxic organic emissions due to Phase 2 RFG; (2)
assess changes in the chemical speciation and reactivity of liquid gasoline and gasoline
headspace vapors due to Phase 2 RFG; (3) characterize fine particle emissions from light-
and heavy-duty vehicles; and (4) characterize the emissions rates and size distribution of
particle-phase polycyclic aromatic hydrocarbons (PAH). Emissions from a large sample of
in-use vehicles were measured in a roadway tunnel to complement previous assessments
that have relied on laboratory dynamometer testing of individual vehicles.

Impact of California Phase 2 RFG

Light-duty vehicle emission rates were measured in the Caldecott tunnel located on state
highway 24 between Alameda and Contra Costa Counties in summers 1994-1997. Large
reductions in pollutant emissions were measured in the tunnel over the course of this study,
due to a combination of RFG and fleet turnover effects. Between summers 1994 and
1997, emissions of carbon monoxide decreased by 31+5%, non-methane organic
compounds (NMOC) decreased by 43+8%, and nitrogen oxides (NOy) decreased by
18+4%. It was difficult to separate clearly the fleet turnover and RFG contributions to
these changes. Nevertheless, it was clear that the effect of RFG was greater for NMOC
than for NO,. The RFG effect on vehicle emissions of benzene was estimated to be a 30-
40% reduction. Use of RFG increased formaldehyde emissions by about 10%, while
acetaldehyde emissions did not change significantly. RFG effects on evaporative
emissions are also important. The combined effect of Phases 1 and 2 of California’s RFG
program was a 20% reduction in gasoline vapor pressure, about one fifth of which
occurred following the introduction of Phase 2 RFG.

The introduction of Phase 2 RFG affected the composition and reactivity of motor
vehicle exhaust and evaporative emissions. Addition of methyl tert-butyl ether (MTBE)
and reduction of alkenes and aromatics in gasoline between summers 1995 and 1996 led to
corresponding changes in the composition of gasoline headspace vapors. Normalized
reactivity of liquid gasoline and headspace vapors decreased by 23 and 19%, respectively.



The reactivity of on-road vehicle emissions measured in the tunnel decreased by only ~5%
because of increased weight fractions of highly-reactive isobutene and formaldehyde in
vehicle exhaust.

Fine Particles

A new assessment of fine particle emissions from light- and heavy-duty vehicles was
obtained by making separate measurements of emissions from uphill traffic in two bores of
the Caldecott tunnel: one bore carried both light-duty vehicles and heavy-duty diesel trucks,
and the second bore was reserved for light-duty vehicles, nearly all of which were
gasoline-powered. Heavy-duty diesel trucks were found to emit 24, 38, and 21 times more
fine particle, black carbon, and sulfate mass per unit mass of fuel burned than light-duty
vehicles. In addition, heavy-duty diesel trucks emitted 15-20 times the number of particles
per unit mass of fuel burned compared to light-duty vehicles. Fine particle emissions from
both vehicle classes were composed mostly of carbon; diesel-derived particulate matter
contained more black carbon (51£11% of PM; s mass) than did light-duty fine particle
emissions (33x4%). Sulfate comprised only 2% of total fine particle emissions for both
vehicle classes. Sulfate emissions measured in this study for heavy-duty diesel vehicles are
significantly lower than values reported in earlier studies conducted before the introduction
of low-sulfur diesel fuel. Combining statewide on-road fuel consumption data with
emission factors measured in this study suggests that diesel vehicles in California are
responsible for nearly half (~45%) of oxides of nitrogen emissions and greater than three
quarters of exhaust fine particle emissions from on-road motor vehicles.

Polycyclic Aromatic Hydrocarbons

A similar tunnel sampling approach was used to assess on-road emissions of polycyclic
aromatic hydrocarbons (PAH). Diesel trucks were the major source of lighter PAH,
whereas light-duty gasoline vehicles were a significant source of higher molecular weight
PAH. Size-resolved measurements of particulate PAH showed significant fractions of
diesel-derived PAH to be present in both the ultrafine size mode {< 0.12 pm) and the
accumulation mode (0.12-2 pm). The ultrafine mode was more prominent for gasoline
engine-derived PAH emissions. PAH concentrations were also quantified in gasoline and
diesel fuel samples. Light-duty vehicle emission factors for particle-phase PAH were
correlated with PAH concentrations in gasoline.

Xiv



Recommendations

Continued on-road surveillance of vehicle emissions at the Caldecott tunnel would be
useful for tracking long-term trends in light- and heavy-duty vehicle emissions.
Permanent installation of continuous CO, CO;, NO,, and hydrocarbon analyzers in
climate-controlled rooms at both ends of the tunnel is recommended.

The air quality impacts of changes in motor vehicle emissions that resulted from use
of reformulated gasoline in the San Francisco Bay Area should be investigated using
Eulerian photochemical air quality models.

Analyses of the impact of reformulated gasoline should always consider evaporative
emissions. Reductions in gasoline vapor pressure and changes to fuel composition
are expected to reduce both VOC mass emission rates and reactivity of evaporative
emissions significantly.

Greater atiention to the role of heavy-duty diesel engine emissions in California's air
pollution problems is needed. Measured emission rates at the Caldecott tunnel
suggest that diesel engines are the dominant source of on-road exhaust fine particle
emissions. Furthermore, the contribution of heavy-duty engines to on-road NOy
emissions is ~45% of the total in California, which is higher than previous estimates
would suggest. Emissions from off-road diesel engines also contribute to air
pollution problems.

Further consideration is needed of the relative importance of light-duty (gasoline)

versus heavy-duty diesel engines as sources of PAH emissions.

Fuel reformulation may help to reduce PAH emissions. Relationships between PAH
emissions and fuel composition should be studied further for both gasoline and
diesel-powered vehicles.

Xv



1 Introduction

1.1 Motivation

Many of the air quality problems faced by the United States and other countries worldwide
are due in large part to motor vehicle use. Motor vehicles emit primary pollutants including
carbon monoxide (CQO), benzene, and soot which are of direct concern to human health. In
addition, atmospheric photochemical reactions involving vehicular emissions of volatile
organic compounds (VOC) and oxides of nitrogen (NOy) contribute to the formation of
secondary pollutants such as ozone and particulate matter. Statewide estimates for
California in 1995 (ARB, 1997} indicate that on-road motor vehicles accounted for 44, 60,
and 68% of total anthropogenic emissions of reactive organic gases, NOy, and CO,
respectively. In urban areas, motor vehicle emissions typically account for even larger
fractions of total anthropogenic air pollutant emissions. For example, in the San Francisco
Bay Area in 1995, on-road vehicles were estimated to contribute 53% of reactive organic
gas emissions, 60% of NOy emissions, and 78% of CO emissions (ARB, 1997).

These air quality problems persist today despite substantial efforts to reduce vehicle
emissions. Efforts to control emissions from light-duty passenger cars and trucks have
been ongoing since the 1960s. Increasingly stringent emission standards for gasoline-
powered vehicles have led to the development and use of control technologies such as
positive crankcase ventilation to reduce VOC emissions; exhaust gas recirculation for NOx
control; and the 3-way catalytic converter for simultaneous control of VOC, NOy, and CO
emissions (Black, 1991). In-use exhaust emissions of VOC and CO from today’s new
cars are about one-tenth of the levels emitted by cars sold prior to 1975. In-use NOy and
evaporative VOC emissions also have been reduced. Unfortunately, increased vehicle
travel, degradation and malfunction of emission control systems, and poor vehicle
maintenance have offset some of the expected air quality benefits of the motor vehicle
emission control program (Calvert et al., 1993).

Although heavy-duty diesel trucks represent only about 1% of all on-road vehicles
(ARB, 1996a), they contribute significanty to air pollution. The importance of heavy-duty
vehicle emissions has increased as the degree of control of light-duty vehicle emissions has



improved. California’s motor vehicle emission inventory model (MVEI 7G) indicates that
in 1995, heavy-duty diesel trucks were responsible for 21% of all NOx emissions and 75%
of exhaust particulate matter (PM) emissions from on-road vehicles statewide (ARB,
1996a). Diesel-derived particles, which are composed largely of carbonaceous material,
contribute significantly to fine carbon particle concentrations in urban atmospheres (Cass
and Gray, 1995). Heavy-duty vehicle emission standards have lagged behind those for
light-duty vehicles, both in time of introduction and in stringency (Sawyer and Johnson,
1995). Diesel engine manufacturers have met increasingly stringent NO, and PM emission
standards in the 1990s through advances in engine and control technology (Sawyer et al.,
1998).

A major air pollution control strategy in California has been the reformulation of
motor vehicle fuels to reduce emissions. California's reformulated gasoline (RFG)
program was implemented in two phases. The first phase took effect in 1992 and required
a reduction in Reid vapor pressure to 7.8 psi during the summer (high-ozone) season, use
of engine deposit control additives, and the elimination of lead-based anti-knock
compounds. Phase 2 of California's RFG program, which took effect during the first half
of 1996, required further modifications to fuel properties including: reduction in Reid vapor
pressure to meet a 7.0 psi limit during the summertime; addition of oxygenated compounds
such as ethers or alcohols; reduction in benzene, aromatic, olefin, and sulfur content in
gasoline; and lower Tsp and Ty distillation temperatures. Refiners may choose to meet
Catifornia RFG program requirements either by following a set recipe that specifies flat and
average limits for each regulated fuel property, or by using a predictive model to develop
alternate gasoline formulations with equivalent emissions reduction benefits.

Federal requirements that apply to areas in California with severe ozone air
pollution problems (currently the South Coast, San Diego, and Sacramento Valley air
basins) remove some of the flexibility provided by California's RFG program because
addition of oxygenated compounds to gasoline in these areas is mandatory. The required
oxygen content in gasoline is 2% by weight, which is equivalent to 11% by volume of the
most widely used oxygenate methyl zer-butyl ether (MTBE). Other oxygenates that may
be used include zert-amyl methyl ether (TAME), methanol, and ethanol. In contrast to the
South Coast Air Basin, the San Francisco Bay Area was not subject to Federal RFG
requirements in 1995, and therefore experienced a sharper transition to California Phase 2
RFG over a single year (i.e., between summer 1995 and 1996).

To reduce emissions from diesel trucks in California, changes to diesel fuel
composition were required starting in 1993. Sulfur content was limited to 0.05% by
weight and aromatic content was limited to 10% by volume (ARB, 1988). Refiners in



California developed alternative formulations of diesel fuel with higher aromatic content
that were less costly to produce while still providing equivalent emissions reductions
(Nikanjam, 1993).

Most studies to determine the effects of fuel composition on vehicle emissions have
been conducted in the laboratory where emissions from individual vehicles are measured
one at a time on a dynamometer (e.g., Bums et al., 1991). Since the laboratory test
procedures are time consuming and expensive, only small numbers of vehicles can be
tested. On-road infrared remote sensing studies of light-duty vehicle emissions (Zhang et
al., 1995) consistently show that the distribution of pollutant emission rates across the
vehicle fleet is highly skewed. In the United States, it is common for 10% of the vehicles
to be responsible for 50% of the emissions of CO, VOC, and NOy, although it is not
necessarily the same high-emitting vehicles that are responsible for 50% of the emissions of
all three pollutants (Stedman et al., 1994; Zhang et al.,, 1996). Laboratory studies of
vehicle emissions are often unable to recruit a sufficiently large random sample to represent
the contribution from high-emitting vehicles accurately (Howard et al., 1997).
Furthermore, even when high-emitting vehicles are included in dynamometer tests, their
emissions vary erratically, and this variability can mask the fuel effects under study
(Knepper et al., 1993).

1.2 Research Objectives

The principal objectives of this research were to assess the impact of reformulated fuels on
vehicle emissions, and to provide an updated characterization of gas and particle-phase
emissions from on-road vehicles. Specific objectives were to: (1) assess changes in CO,
NO;, speciated VOC, and gas-phase toxic organic emissions due to Phase 2 RFG; (2}
assess changes in the chemical speciation and reactivity of liquid gasoline and gasoline
headspace vapors due to Phase 2 RFG; (3) characterize fine particle emissions from light-
and heavy-duty vehicles; and (4) characterize the emission rates and size distribution of
particle-phase polycyclic aromatic hydrocarbons.

1.3 Approach

To complement previous assessments of reformulated fuels that have relied on laboratory
dynamometer testing of individual vehicles, in this study vehicle emissions were measured
in a roadway tunnel. In addition to measuring pollutant concentrations, vehicle
characteristics and driving conditions in the tunnel were characterized. Fuel samples were
collected and analyzed to relate measured emissions to fuel properties.



Throughout this research, vehicle emissions are normalized to total carbon (mainly
CO,) concentrations measured in the tunnel. By carbon balance, emission factors are
expressed per unit mass of fuel burned, rather than per unit distance of vehicle travel.
Normalization of emissions to fuel consumption eliminates the need to measure the tunnel
ventilation rate, and therefore eliminates a significant source of measurement uncertainty
(Rogak et al., 1998a). Additionally, emission factors normalized to fuel consumption
rather than distance traveled fluctuate less as a function of driving condition because fuel
consumption is approximately proportional to engine load and emissions over a wide range
of driving conditions. Finally, fuel-based emission factors can be combined with fuel sales
data to develop motor vehicle emission inventories (Singer and Harley, 1996; Black et al.,
1997; Dreher and Harley, 1998).

1.4 Field Site

Vehicle emissions were measured in the Caldecott tunnel. Located east of San Francisco
Bay on state highway 24, the Caldecott tunnel runs in the east-west direction connecting
cities in Contra Costa County with Oakland, Berkeley, and San Francisco. The tunnel
comprises three two-lane traffic bores, is 1100 m long, and has a roadway grade of 4.2%,
uphill in the eastbound direction. Forced transverse ventilation along the length of the
tunnel is provided by adjustable pitch fans that are located in portal buildings above the
entrance and exit of the tunnel. Additional longitudinal ventilation is induced by the flow of
vehicles and by prevailing westerly winds. A schematic of the tunnel is presented in Figure
1.1.

Traffic direction is always westbound in the northernmost bore and always
eastbound in the southernmost bore. To accommodate large traffic volumes during
weekday rush hour periods, the center bore of the tunnel carries westbound traffic toward
San Francisco in the morning, and eastbound traffic in the afternoon. Field sampling was
conducted in the southernmost bore (bore 1) and in the center bore (bore 2) during the
afternoon when vehicles traveled in the eastbound (uphill) direction toward Contra Costa
County. The vehicle fleet traveling through bore 2 was composed almost entirely of light-
duty vehicles whereas the fleet traveling in bore 1 contained a mix of light- and heavy-duty
vehicles.
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1.5 Overview

Vehicle emissions were measured at the Caldecott during four field monitoring campaigns.
Chapters 2 and 3 report on the impacts of California reformulated gasoline. Gasoline
properties and vehicle emission rates measured in the tunnel during the summers of 1994,
1995, 1996, and 1997 are considered in the evaluation. Changes to gasoline composition
included an increase in oxygen content, and decreases in alkene, aromatic, benzene, and
sulfur contents between summers 1995 and 1996 when reformulated gasoline was required
for use statewide. A model is developed to relate the composition of headspace vapors 10
that of liquid gasoline. The effects of reformulated gasoline on both tailpipe exhaust and
evaporative emissions are assessed. In addition, the effects of changes to gasoline
composition on the speciation and reactivity of VOC emissions are examined.

Chapters 4 and 5 present an updated assessment of exhaust fine particle emissions
from light- and heavy-duty motor vehicles. Sampling was conducted during the summers
of 1996 and 1997 to characterize the chemical composition of PM; s emissions and to
assess the relative contributions of light- and heavy-duty vehicles to fine particle and NOx
emissions. Chapter 4 considers PMj s, black carbon, organic carbon, and NO, emission
rates; emissions of polycyclic aromatic hydrocarbons are the focus of Chapter 5.

In Chapters 6 and 7, the major findings of this research are summarized, and areas
for future research are recommended. Appendices follow with detailed chemical speciation
profiles for whole liquid gasoline, gasoline headspace vapors, and motor vehicle VOC
emissions measured in the Caldecott tunnel. Time series plots of pollutant concentrations
measured inside the tunnel are presented in a final appendix.



2 Impact of RFG on Mass Emission Rates

2.1 Introduction

Use of reformulated gasoline (RFG) was mandated in the 1990 Clean Air Act Amendments
in areas of the country with severe ozone air pollution problems. While Federal RFG is
required in only some areas in California (currently South Coast, San Diego, and
Sacramento Valley air basins), a statewide reformulated gasoline program has been
implemented by the California Air Resources Board.

In Phase 1 of the California program, effective 1992, the maximum allowed Reid
vapor pressure (RVP) of gasoline sold during summer months was reduced from 9.0 to
7.8 psi, the use of lead in gasoline was eliminated, and the use of detergent additives to
control engine deposits was required (ARB, 1990). Phase 2 of the California program
took effect in the first half of 1996, and required more extensive changes to gasoline
properties (ARB, 1991; ARB, 1994). These changes included: further reduction of
summertime RVP to 7.0 psi maximum; reduction of benzene, total aromatic, olefin, and
sulfur contents in gasoline; addition of oxygenates; and reductions in distllation
temperatures, Tso and Tgg. Refiners can choose to produce gasoline with the prescribed
formulation shown in Table 2.1, or they may use a predictive model to establish alternative
gasoline formulations that result in equivalent or greater emissions reductions (ARB,
1994). Estimates of the effect of Phase 2 RFG on vehicle emissions, including cold-start,
running exhaust, and evaporative emissions, are reductions of reactive organic gases by
17%, oxides of nitrogen (NOy) and carbon monoxide (CO) by 11%, and toxic air
contaminants by 30% in its first year of use (ARB, 1994).

The Auto/Oil Air Quality Improvement Research Program (Auto/Oil, 1992;
Auto/Oil, 1993; Auto/Oil, 1995) demonstrated through laboratory testing that vehicle
emissions can be reduced by modifying fuel properties. Tests were conducted using a
stop-and-go urban dynamometer driving cycle, and gasoline composition was carefully
controlled in each test. Individual and combined effects of changes in gasoline properties
on exhaust emissions were examined. However, fuel effects were determined for only a
small number of well-maintained, low-emitting vehicles, whereas on-road emissions are



dominated by small numbers of gross-polluting vehicles (Zhang et al., 1995). Since the
effects of fuel changes on emissions from gross-polluting vehicles could not be
characterized definitively (Knepper et al., 1993), the Auto/Qil results may not be indicative
of RFG effects for the in-use vehicle fleet (Howard et al., 1997).

To complement the results of dynamometer studies, the effects of changes in fuel
composition on vehicle emissions can be determined in on-road settings. For example,
remote sensing (Bishop and Stedman, 1990; Lyons and Fox, 1993) and tunnel
(Kirchstetter et al., 1996; Gertler et al., 1997) studies have investigated the impact of
modifying fuel properties on exhaust emissions from thousands of in-use vehicles,
including gross-polluters, driven under real-world conditions. Tunnel studies, in
particular, are well-suited for measuring the effects of reformulated gasoline because many
pollutants can be measured, including CO, VOC, NOy, and individual toxic compounds.

This chapter reports on the emission impact of California Phase 2 RFG. Vehicle
emissions were measured in the Caldecott tunnel during the summers prior to and after the
introduction of RFG. Each summer, the composition of gasoline sold in the Bay Area was
determined. The impact of RFG on mass emission rates is considered here. The effect of
REG on the speciation and reactivity of exhaust and evaporative organic gas emissions is
addressed in Chapter 3.

2.2 Experimental

2.2.1 Gasoline Sampling and Analysis

Gasoline sold in the San Francisco Bay Area was collected and analyzed by Southwest
Research Institute. Measured gasoline properties included: RVP; density; aromatic, alkene,
alkane, oxygenate, sulfur, and benzene contents; and distillation temperatures including Tso
and Tgo. For the purpose of this study, fuel survey data were obtained for regular, mid-,
and premium grade gasoline samples collected during summers 1994-1997 (McGetrick,
1997). Each year, about 35 gasoline samples of major gasoline brands were collected at
service stations in Concord and San Francisco in July and August, respectively.

Composite properties were computed for each brand of gasoline according to the
market share of each gasoline grade: 58% regular, 20% mid, and 22% premium (Gilson,
1995). Average gasoline properties were computed by averaging together all brand
composites with equal weighting.

2.2.2 Field Site

Vehicle emissions were measured at the Caldecott tunnel. The important features of
the tunnel have already been discussed and illustrated in Chapter 1. Field measurements
were conducted on 10 or more days during each summer from 1994 through 1997.



Emissions were measured in the center bore (bore 2) during the afternoon commute period
from 1600-1800 h when vehicles traveled in the eastbound (uphill) direction. On selected
days in summers 1996 and 1997, additional measurements were made earlier in the
afternoon, starting at 1300 h, before the afternoon peak traffic period.

Vehicles observed in this study were operating in a warmed-up mode. There are
two nearby on-ramps that serve highway 24, at distances of 0.3 and 1.0 km from the
western end of the tunnel. The nearer on-ramp is close enough to allow some vehicles to
enter the tunnel while operating in cold start mode, but this on-ramp directs traffic into the
southernmost bore (bore 1) of the tunnel, not the center bore (bore 2) where measurements
for this study were made. Vehicles merging onto highway 24 via the further on-ramp are
exiting another highway, and are therefore already operating in hot stabilized mode.
Moreover, the overwhelming majority of vehicles that drove through the tunnel (both
bores) during the afternoon commute had traveled longer distances from Berkeley,
Oakland, or San Francisco prior to entering the tunnel.

2.2.3 Traffic Monitoring

The vehicle fleet traveling through the center bore of the Caldecott tunnel was monitored on
all days when emissions were measured. Visual counts were used to determine traffic
volumes and composition. Vehicles were assigned to one of three categories: cars; light-
duty trucks including pickups, sport utility vehicles, and small vans; and heavy-duty
vehicles. License plate surveys were conducted to determine the age distribution and the
fuel type of the vehicles being monitored. License plates were recorded using a Hi-8
format video camera and were later matched with vehicle registration data. Driving
conditions inside the tunnel were monitored by following traffic with a chase car. Average
vehicle speed was determined using the tunnel length and measured transit time for each
“drivethrough”. Two hundred fifty drivethroughs were conducted during summers 1995-
1997. In addition, an instrumented vehicle that logged speed at one second intervals was
used in summer 1996 to measure the speed profile inside the tunnel. Finally, a video
camera was used each summer to record a wide view of all traffic exiting the tunnel.

2.2.4 Pollutant Measurements

Pollutant concentrations were measured in the traffic tube ~50 m before the tunnel exit
(position A in Figure 1.1) and in the clean background air which was injected into the
tunnel by the ventilation fans (position B in Figure 1.1). Concentrations of CQO,, CO, and
NO, were measured continuously. CO; and CO concentrations were quantified using
infrared gas filter correlation spectrometers, and NO, concentrations were measured by
chemiluminescence. Continuous air monitoring data were recorded as five-minute average



concentrations. Using traceable gas standards, zero and span checks were performed
several times a week on each analyzer.

Two-hour integrated air samples were collected in 6-liter stainless steel canisters for
subsequent analysis to quantify methyl tert-butyl ether (MTBE) and hydrocarbon
concentrations. Similarly, two-hour integrated samples were collected using DNPH-
impregnated silica cartridges for subsequent analysis to quantify carbonyl concentrations.
A coiled copper tube, coated on the inside with potassium iodide, was placed upstream of
the silica cartridge for the ventilation intake air samples. This was done to remove ozone
from the sample air stream since ozone interferes with the quantification of carbonyl
concentrations (Arnts and Tejada, 1989). An ozone scrubber was not needed for the tunnel
samples because any ozone drawn into the tunnel is rapidly removed by reaction with nitric
oxide. All hydrocarbon and carbonyl samples were collected concurrently with
measurements of CO, CO,, and NOy concentrations. Hydrocarbon and carbonyl samples
were collected only during the 1600-1800 h sampling periods.

Total and individual non-methane hydrocarbon (NMHC), methane, and MTBE
concentrations were determined by gas chromatography (GC) at the Bay Area Air Quality
Management District's laboratory in San Francisco. Hydrocarbon samples were
preconcentrated using a Nutech model 8548 cryogenic concentrator, and injected into a
Perkin Elmer model 8500 gas chromatograph (GC) equipped with a flame ionization
detector (FID). The DB-1 column used in the GC was 30 m long, with an inner diameter
of 0.32 mm and a 5 pm film thickness. Following sample injection, the column
temperature was held at -51°C for five minutes, then increased at 5°C per minute to 100°C,
at 3°C per minute to 160°C, at 5°C per minute to 200°C, and held at that temperature for
seven minutes. This method was used to quantify speciated hydrocarbons in the Cs to Cio
range. A GS-alumina column, 50 m long by 0.53 mm inner diameter, was used to speciate
and quantify the C; to C4 hydrocarbons. For quantification of NMHC concentrations
during summer 1997 analyses only, a Nutech model 3550A cryogenic concentrator was
used to preconcentrate samples, and a DB-1 column was used to quantify all Cp to Cyp
hydrocarbons. Total non-methane hydrocarbon (NMHC) concentrations were quantified
with the same GC at an oven temperature of 105 °C. An analytical column was not used.
Total NMHC in the sample was determined by comparison of peak area to that of an NIST
certified propane standard.

Methane was quantified separately by direct injection of samples into a Perkin
Elmer model 8500 GC equipped with FID and a 3.7 m long by 3.2 mm inner diameter
stainless steel column packed with Chromosorb 102, 100 to 120 mesh. MTBE
concentrations were determined using a Varian Model 3400 GC equipped with PID/ECD in
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series. Samples were preconcentrated using a Tekmar 5010 Automatic Desorber and a
Tenax trap. The column used in the GC was packed with 1% SP1000/Carbopack B, 60/80
mesh; was 4 m long; and had an inner diameter of 0.32 cm. Following sample injection,
the oven temperature was increased at 2 °C per minute from 85 to 125 °C, and held at that
temperature for 15 minutes. MTBE concentrations were not quantified for samples
collected in summer 1994.

During the 1994 field campaign, it was found that 1,3-butadiene was unstable in the
tunnel hydrocarbon samples during several weeks of sample storage prior to analysis
(Kirchstetter et al., 1996). Therefore, no measurements of butadiene concentrations are
reported for 1994. In summers 1995-1997, canisters were usually analyzed in the
laboratory within 24 hours of sample collection to minimize loss of 1,3-butadiene.

After each two-hour sampling period, DNPH-cartridges were eluted with 5 mL of
acetonitrile and the extracted samples were stored in tightly capped glass vials in a
refrigerator. All elutions were completed within a few hours of sample collection. At the
end of each year’s sampling program, the extracted samples were analyzed by high-
performance liquid chromatography using a procedure nearly identical to that developed for
the Auto/Qil Air Quality Improvement Research Program (Siegl et al., 1993). Carbonyl
samples were analyzed by Hoekman and coworkers at Chevron Research and Technology
Co. from 1994 to 1996, and by Fung at Atmospheric Assessment Associates Inc. in 1997.
2.2.5 Quality Assurance
Each summer, the Quality Assurance Section of the California Air Resources Board (ARB)
conducted performance audits of the CO and NOy analyzers used at the Caldecott tunnel.
In all cases, the analyzers were found to operate well within ARB’s £15% control limits.
Tunnel CO and NOy analyzers were always accurate within 2 and +5%, respectively.

Measured total NMHC concentrations were compared with independent analyses of
tunnel air samples collected in parallel. Independent analyses were performed by the
Monitoring and Laboratory Division of the ARB, Desert Research Institute, and
Rasmussen. Six comparisons were made in summers 1995-1997. Total NMHC
concentrations reported for samples collected in this study were between 1 and 9% higher
than the values reported by the other investigators.

2.3 Results

2.3.1 Gasoline Properties

Average San Francisco Bay Area gasoline properties derived from fuel survey data for
summers 1994-1997 are shown in Table 2.1. Also shown are the flat limits for
California’s Phase 2 RFG program, which took effect in the first half of 1996. As
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expected, significant changes to gasoline occurred between summers 1995 and 1996.
Large changes included decreases in benzene, olefin, and aromatic contents; and an
increase in oxygen content to 2.0 = 0.3 wt%. Distillation temperatures, Tso and Tgp, and
gasoline density also decreased between 1995 and 1996. Gasoline properties shown in
Table 2.1 did not change between summers 1994 and 1995, or between summers 1996 and
1997, with the exception of changes to sulfur and oxygen content discussed below.

A trend toward lower sulfur content in gasoline was already evident in summer
1995. The magnitude of the reduction in sulfur content was comparable between 1994-
1995 and 1995-1996. In the earlier two years, there was large brand-to-brand variability in
gasoline sulfur levels, whereas by 1996 all gasoline samples had low sulfur content (< 40
ppmw).

Oxygen content in gasoline was low in summers 1994 and 1995, and then rose
dramatically in 1996, as indicated in Table 2.1. Compared to 1996 levels, average oxygen
content decreased to 1.6 + 0.6 wt% in 1997, and showed greater variability across gasoline
brands and grades, with some gasoline samples having very low oxygen content.
Presumably, Bay Area refiners used California’s predictive model (ARB, 1994) to
determine modifications to other fuel properties to compensate for reduced use of
oxygenate in summer 1997.

The predominant oxygenate found in gasoline was MTBE. Small amounts of tert-
amyl methyl ether (TAME) and methanol, typically < 0.1% by volume, were detected in
some 1996 gasoline samples. In 1997, some gasoline samples contained greater amounts
of TAME, which contributed about 5% of the oxygen content found in gasoline on
average. The remaining 95% of the fuel oxygen content continued to be supplied in the
form of MTBE.

2.3.2 Fuel Economy

The energy content of MTBE (26 MJ L'!), as measured by its lower heating value (LHV),
is less than that of conventional gasoline (33 MJ L'!). Since the volumetric energy content
of gasoline is a good predictor of fuel economy (Hochhauser et al., 1993), reformulation
may decrease fuel economy. To estimate the effect of switching to Phase 2 RFG on fuel
economy, heating values were computed using the detailed chemical composition of regular
and premium grade gasolines collected at high-volume service stations in Berkeley
(discussed in Chapter 3). Heating values were calculated using the following equation:

e

LHV = —{ (Ah; - w, )}-pf (2.1)

i=1
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where LHV is the lower heating value (J L'!), py is the density of gasoline (g L), w; is the
weight fraction of compound i in gasoline, and Ah; is the enthalpy of combustion of
compound i (J g'!). Enthalpies of combustion for each compound in gasoline were
calculated from tabulated enthalpies of formation (Reid et al., 1987) assuming complete
combustion to carbon dioxide and water vapor, and are reported in Appendix A.

Overall, the LHV of gasoline decreased from 32.8 MJ L1 in 1995 to 31.7 MJ L"!
in 1996, mainly due to a decrease in gasoline density and addition of MTBE. This decrease
in the volumetric energy content of gasoline corresponds to a ~3% decrease in fuel
economy for most vehicles (Hochhauser et al., 1993).

2.3.3 Traffic Characteristics

Attributes of the traffic that traveled through the Caldecott tunnel from 1600-1800 h
are presented in Table 2.2. The number of vehicles traveling through the tunnel, ~8400
during each two-hour sampling period, was consistent on all sampling days across all four
summers. Traffic consisted of light-duty vehicles almost exclusively because heavy-duty
vehicles were required to use other tunnel bores. Heavy-duty trucks comprised < 0.3% of
the vehicles in the center bore in each year. About two-thirds of the vehicles were cars and
the remainder were pickups, sport utility vehicles, and small vans. A gradual increase was
seen between 1994 and 1997 in the fraction of light-duty trucks, as indicated in Table 2.2.

Table 2.2. Attributes of vehicles using the center bore of the Caldecott tunnel between
1600-1800 h in summers 1994-1997.

attribute 1994 1995 1996 1997
volume (# h'!) 4260 +240 4220+260 4220+220 4220%170
cars (%) 69 67 66 65
light-duty trucks? (%) 31 33 34 35
heavy-duty vehicles® (%) 0.2 0.2 0.3 0.2
mean model year n/a® 1989.3 1990.1 1990.9
light-duty diesel® (%) n/a 1.0 1.5 1.8

2 | ight-duty trucks included pickups, sport utility vehicles, and small vans.

b Heavy-duty vehicles included large delivery trucks (i.e., UPS delivery vans and larger
vehicles).

¢ Not available.

d The fraction of cars and light-duty trucks that were diesel-fueled, as determined from
vehicle registration information.
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Each successive summer, the average vehicle model year was about one year
newer. The average vehicle age was ~7 years in all cases. Pre-1980 model year vehicles
comprised about 4% of the fleet; pre-1975 non-catalyst vehicles comprised 2% or less of
the fleet each summer. The light-duty fleet was almost entirely gasoline-powered; the
fraction of vehicles identified as diesel-fueled ranged from 1 to 2%. Therefore, > 95% of
the vehicles in the tunnel were originally equipped with catalytic converters.

The distributions of average vehicle speeds measured during 200 twnnel
drivethroughs that took place between 1600-1800 h are shown in Figure 2.1. Average
vehicle speeds of 60 km h'! were typical, and no major changes in driving conditions were
observed from one year to the next. Eighty-six percent or more of the drivethroughs in
each summer had average speeds between 50 and 80 km h'!. Slower speeds resulted from
an occasional disruption in traffic flow, such as a vehicle stall inside the tunnel or heavy
congestion downstream of the tunnel. Stalled vehicles were cleared rapidly from the tunnel
by Caltrans personnel.

Instrumented vehicle measurements conducted in 1996 provided additional
information about driving conditions. Figure 2.2 shows the average speed profile of the
instrumented vehicle measured during 26 trips through the tunnel from 1600-1800 h.
Average speed was 52 km h°! at the entrance, and 69 km h! at the exit of the tunnel.
Speeds were slower at the entrance because heavy congestion during the afternoon peak
traffic period resulted in a queue of vehicles ahead of the tunnel entrance. Vehicle speeds
beyond the middle of the tunnel were more uniform than in the first half of the tunnel. The
driving pattern depicted in Figure 2.2 was very repeatable. Heavy accelerations and stop-
and-go driving were seldom observed.

Figure 2.3 shows the instantaneous speeds and accelerations of the instrumented
vehicle while driving through the tunnel. To account for the increase in engine load when
driving on the 4.2% uphill grade inside the tunnel, an acceleration of g-sin® = 0.41 m s°2,
where sinf = tan® = 0.042, has been added to the measured vehicle acceleration. The
outer boundary of the speed/acceleration domain of the LA-4 city driving cycle used in the
Federal Test Procedure (FTP) is shown in Figure 2.3 for comparison with the driving
conditions in the tunnel. Most of the driving in the tunnel occurred within a small range of
speeds and accelerations, which were largely within the FTP domain. Nearly all points that
were outside of this domain were due to higher accelerations. For some vehicles, this may
have led to enrichment of the air/fuel mixture.

Driving conditions earlier in the afternoon differed from those observed from 1600-
1800 h. Traffic volume from 1300-1500 h averaged 2740 £ 660 and 2620 * 520 vehicles
per hour in 1996 and 1997, respectively, which was about 60% of the 1600-1800 h

15



001-06

06-08

08-0L

(,.y wy) paads ajoIysA ebieieny

0.-09

09-0G

0s-ov oy-0e 0£-02 0c-01

v

-

0i-0

'q0081-0091
WO [2UUN) 13093p[E)) Y} UT SYSnoNpLALp 00z SuLnp painseswr spaads a[orfaa age1oae Jo weiSoisIy -z Insig

T

L4

LLF09=" /6612
6F65=T1 ‘06610
6 F65="1'G6610

000

10C0

1 0€0

1 0¥0

050

sdu] Jo uoioei

16



'966] JSWWNS UT Y 00K [-009] WIOIJ S[O1YA PAUIUINIISUT
ue yym sdin gz unnp painseaws [puuny Nod3pie)) oYl Ul 9[joid poads (uonerasp prepuels | F) o8eIAy *g°g 2andly

(wy) jpuun] ojul aouelsIq

0l 60 80 L0 90 S0 LAY €0 ¢0 L0 00

T L) T T ¥ ¥ v 1 Ly ¥ T | ¥ L T T T T T T T ON

Y

a%.. ‘ . %o z _ magg - 09

g!

—

—

s —,

—

— -
(.4 wy) peeds

il

I

001

17



(Y 0081-0091)

9661 Joununs JuLnp [auun) 1oP[e)) 9y spisur utaup 10§ jo[d paads 'sa uoneIdOOE PU029s-£q-pu0dag ‘¢ 7 dam3L

001

08

09

(4 wxy) peeds

oy

0¢

T T

|puunj nooepien +

urewop d1 4 —

0
Q¢
. m—.l
- o.ﬁl
] >
160 8§
©
E (0]
o
00
i 3
3
190 o
{101
161

0c

18



volume. Since traffic was lighter, there was no queue of vehicles waiting to enter the
tunnel. Vehicles typically entered, traveled through, and exited the tunnel at about the same
speed. Vehicle speeds measured from 1300-1500 h during 50 additional drivethroughs
were 79 + 7 and 81 =7 km h'! in summers 1996 and 1997. These were ~20 km h-! faster
than typical vehicle speeds observed from 1600-1800 h.

Traffic volume was lower, and vehicle speeds were higher, during the 1600-1800 h
sampling period on August 6, 1996, relative to conditions observed on other sampling days
due to a closure of multiple lanes on the San Francisco-Oakland Bay bridge, which is
located to the west of the tunnel. Average traffic volume during this sample period was
3910 + 210 vehicles per hour; the average speed was 71 £ 11 km h-1, about 10 km h-!
faster than usual. Therefore, measurements of vehicle emissions on August 6 were
excluded from the calculation of summer 1996 emission factors.

2.3.4 Pollutant Concentrations

Background-subtracted pollutant concentrations measured during summers 1994-1997 at
the Caldecott tunnel are presented in Table 2.3. Pollutant concentrations measured inside
the tunnel were much higher than in background air. Concentrations of CO, NOy, and
NMHC were typically 25, 30, and 10 times higher in the tunnel air compared to
background air. In all years, background concentrations of CO and NO, were very low
and indicated that there was little or no recirculation of tunnel exhaust air back to the
ventilation intake. For example, background CO concentrations were typically less than 2
ppm, whereas CO concentrations inside the tunnel were 20-30 ppm. Measured
background CO; concentrations in summers 1996 and 1997 were 383 = 36 and 380 + 13
ppm, respectively. In 1994 and 1995, background CO, concentrations were not monitored
continuously, so a typical concentration of 380 ppm was used to compute background-
subtracted values of CO, shown in Table 2.3 for these summers.

2.3.5 Emission Factors

Vehicle emission factors were calculated from the measured pollutant concentrations shown
in Table 2.3. Emission factors were computed as mass of pollutant emitted per unit volume
of gasoline bumed using the following equation:

Ep = AlP] MWp W Ps (2.2)
A[CO, ]+ A[CO]+ A[VOC] A MW,

where Ep is the emission factor for pollutant P (g L-1), A[P] is the increase in the
concentration of pollutant P above background levels (ppm), MWp is the molecular weight
of pollutant P (g mol-l), MW, = 12 g mol-! is the molecular weight of carbon, w, is the
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weight fraction of carbon in gasoline, and pr is the density of gasoline (g L'1). NOx
emission factors are reported as nitrogen dioxide (i.e., a molecular weight of 46 g mol-!
was used in eq 2.2 for NOy calculations), even though NO constituted 99% of the NO,
measured in the tunnel. Since the FID is known to give a partial response to MTBE, equal
to 86% of propane’s response on a per carbon basis (Hoekman, 1992), NMHC
concentrations reported in Table 2.3 include a small contribution from MTBE. True
NMHC concentrations were calculated by subtracting 86% of the directly-measured MTBE
concentrations (ppbC) from reported total NMHC concentrations measured by FID.
NMHC emission factors were then computed assuming a molecular weight of 14 g per
mole of C. Non-methane organic carbon (NMOC) emission factors were calculated as the
sum of NMHC, MTRBE, and formaldehyde emission factors. Additional contributions to
total NMOC mass from other aldehydes and ketones were negligible. Gasoline densities
used in eq 2.2 were obtained from fuel survey data shown in Table 2.1. Carbon weight
fractions for summers 1994-1995 and summers 1996-1997 were 0.87 and 0.85,
respectively. The lower carbon weight fraction for the more recent summers is a result of
having ~2% oxygen by weight in gasoline.

2.3.6 Emission Trends

Average emission factors of regulated and toxic air pollutants measured each summer are
shown in Figures 2.4 and 2.5. Note that for plotting purposes, emission factors for CO,
benzene, and formaldehyde (HCHO) shown in these figures have been divided by a factor
of ten. Within each year, emission factors were consistent from one day to the next, as
reflected by the confidence intervals shown on the figures. This day-to-day consistency
was expected because driving conditions were similar, and many of the same commuter
vehicles traveled through the tunnel each day. Emission factors for 1,3-butadiene, which
was found to be unstable in stainless steel canisters during tunnel sampling in 1994
(Kirchstetter et al., 1996), showed larger day-to-day variability.

Year-to-year and overall changes in emission factors from 1994 to 1997 are
reported in Table 2.4. Whereas vehicle emissions shown in Figures 2.4 and 2.5 are
expressed per unit volume of fuel burned and have not been adjusted to account for the 3%
decrease in fuel economy due to RFG use, changes in vehicle emission rates reported in
Table 2.4 do account for changes in fuel economy. Measured emission factors for 1996
and 1997 were multiplied by 1.03 to account for the 3% decrease in fuel economy relative
to 1994 and 1995. Thus, values shown in Table 2.4 are representative of changes in
emissions per km of vehicle travel.

As indicated in Figures 2.4 and 2.5, and in Table 2.4, vehicle emissions were
significantly lower in 1997 than in 1994. Over the course of this study, emissions (per km
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Table 2.4. Percent changes between summers in vehicle emissions (g km-!) measured
during the 1600-1800 h sampling period.

% change in vehicle emissions®

overall
pollutant 1994-1995 1995-1996 1996-1997 1994-1997
CO -17+4 ~18+2 +1+4 -31%£5
NMOC 9+8 -22+7 -19+8 —43+8
NOy ~10x4 —-6t4 —2%3 -18 x4
benzene -22+11 -52+5 -10+7 -67 +11
1,3-butadiene n/ab -39+17 +21+£10 -26£17°
formaldehyde -8%5 +4+8 —41+10 44 + 8
acetaldehyde -18 7 -15+9 -23+13 -47+8§

#95% confidence intervals for changes in vehicle emission factors calculated using eq 2.2.
Emission factors shown in Figures 2.4 and 2.5 for 1996 and 1997 have been multiplied by
1.03 to account for the 3% decrease in fuel economy that occurred between 1995 and 1996.
Thus, values reported here are representative of emission changes per km of vehicle travel.

b Not available.

¢ The overall change in 1,3-butadiene reported here is the change between 1995 and 1997,
discounted for the decrease in fuel economy between 1995 and 1996.

of vehicle travel) decreased by 18% for NOx; 31% for CO; ~45% for NMOC, HCHO, and
acetaldehyde; and 67% for benzene. Butadiene was not measured in 1994; however, the
emission factor for butadiene in 1997 was 26% lower than in 1995. For all pollutants
except formaldehyde, a significant portion of the overall decrease in emissions occurred
between 1995 and 1996, which is when most of the changes to gasoline composition
occurred. Emission factors also changed between 1994-1995 and 1996-1997, when most
gasoline properties were comparatively stable. Decreases in CO and NO, emissions
between 1994-1995 were comparable to decreases between 1995-1996.

2.3.7 Temperature Effect

Ambient air temperature may influence vehicle emissions. For instance, greater use of air
conditioning on hotter days increases engine load. Average 1600-1800 h temperatures in
Berkeley, near the Caldecott tunnel, were 18, 20, 20, and 19°C during sampling periods in
sammers 1994-1997, respectively (Thorson, 1997). The differences from year to year
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were negligible. In fact, afternoon temperatures varied much more from day to day within
each summer than they did from one summer to the next. For example, the maximum and
minimum afternoon temperatures during sampling in summer 1995 were 27 and 15°C, but
there was no correlation between air temperature and emission factors (normalized to fuel
consumption) measured at the tunnel. It is unlikely that air temperature had any effect on
year-to-year changes in emissions measured in this study.

2.3.8 Emissions vs. Driving Condition

Emission factors for CO and NO; are plotted as a function of time of day in Figures 2.6
and 2.7. For both pollutants, emission factors decreased steadily during the course of the
afternoon. Average CO and NOy emission factors measured from 1300-1500 h were about
40 and 20% higher, respectively, than from 1600-1800 h. This trend is atiributed to the
decrease in vehicle speeds, and hence in engine loads, during the course of the afternoon.
As noted above, vehicle speeds were ~20 km h! faster from 1300-1500 h compared to the
later 1600-1800 h sampling period.

As noted above, vehicle speeds during the 1600-1800 h sample period on August
6, 1996 were about 10 km h'! higher than usual. Measured CO and NOy emission factors
for this period were 15 and 4% higher, respectively, than the average 1600-1800 h
emission factors measured on all other days in 1996. These changes are consistent with
emissions trends during the period from 1300 to 1800 h described above. NMOC
emissions on August 6 were 15% lower than the average for the other sampling days in
summer 1996.

The CO emission factor exhibited a more pronounced trend than did the NOy
emission factor, indicating that the CO emission factor was more sensitive to changes in
engine load and air/fuel ratio. Fuel enrichment was probably more common from 1300-
1500 h and during the high speed event of August 6, 1996 than during the typical 1600-
1800 h period when most of the driving occurred within the domain of the FTP city driving
cycle (see Figure 2.3). The same decreasing trend in CO and NOy emissions factors was
observed over the course of the afternoon in both 1996 and 1997, and was expected since
the same pattern of increasing traffic volume and decreasing average speeds from 1300-
1800 h was observed in both years.

2.4 Discussion

Vehicle emissions were measured during four consecutive summers, 1994-1997, in order
to quantify emission changes between summers 1995-1996 which spanned the transition to
Phase 2 RFG use, and to measure the impact of fleet turnover on vehicle emissions
between summers 1994-1995 and 1996-1997 when gasoline composition was expected to
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be relatively stable. It was anticipated that changes in emissions between summers 1995-
1996 would express the combined effects of RFG use and fleet turnover, and that the RFG
effect could be separated using measurements of the effect of fleet turnover alone.

Replacement of older vehicles with newer ones that have more robust emission
controls and meet increasingly stringent emissions standards reduces fleet-average
emissions. This is supported by a study of long-term vehicle emission trends in highway
tunnels prior to the introduction of reformulated gasoline, which indicates that fleet
turnover is the primary cause for reductions in on-road light-duty vehicle emissions
(Pierson, 1995). Light-duty on-road vehicle emissions of CO decreased an average of
8.5% per year over the period from 1981 to 1992 (Pierson, 1995). The vehicle fleet
rraveling in the Caldecott tunnel was newer during each successive summer that
measurements were conducted (see Table 2.2). Thus, it is reasonable to expect that fleet
turnover contributed to the measured changes in emission factors.

Although it was expected in this study that changes in emission factors between
1994-1995 and 1996-1997 would be the result of fleet turnover alone, it appears that
changes in fuel composition also may have been important. Assuming, for example, the
17% decrease in CO emissions measured at the Caldecott tunnel between 1994-1995 was
due entirely to fleet turnover would be inconsistent with long-term trends in vehicle
emissions measured in other tunnels (Pierson, 1995). Additionally, California’s motor
vehicle emission factor model, EMFAC version 7F, predicts only a 5-7% reduction in
running exhaust emissions of CO, total organic gases, and NOy due to fleet turnover
between 1993 and 1994 when fuel properties were stable.

Gasoline sulfur content decreased by about 50 ppm between 1994-1995 (Table
2.1). Experiments conducted during the Auto/Oil program indicate that reductions in
gasoline sulfur content alone can have a significant impact on emissions, even when sulfur
content is already low (Koehl et al.,, 1993). Average hot stabilized NMHC, CO, and
benzene emissions from ten 1989 model year vehicles decreased by 32, 29, and 57% when
gasoline sulfur content was reduced from 138 to 44 ppm. Average stabilized formaldehyde
and acetaldehyde emissions also decreased significantly in the same test, and NOy
emissions remained about the same. Therefore, changes in gasoline sulfur content may
have affected emissions measured in the tunnel between 1994 and 1995, although the
magnitude of the sulfur effect on the in-use fleet is uncertain.

Between summers 1996 and 1997, gasoline oxygen content decreased from
20+0.310 1.6 +0.6 wt%; MTBE content decreased by about 2.8 vol% whereas alkane
content in gasoline increased by about the same amount. Previous on-road studies indicate
that addition of oxygenates to gasoline, in combination with other changes to fuel

31



properties such as a decrease in aromatics content, led to reduced CO and NMOC
emissions (Bishop and Stedman, 1990; Lyons and Fox, 1993: Kirchstetter et al., 1996).
In the Caldecott tunnel, Kirchstetter at al. (1996) measured decreases in CO and NMOC
emissions of about 12 and 11%, respectively, per wi% increase in gasoline oxygen
content. NO, emissions were not affected. The decrease in Bay Area gasoline oxygenate
content between 1996-1997 may have affected emissions, but since other fuel properties
such as sulfur and aromatics content did not change much during this period, the impact
was likely less than a 4-5% increase in CO and NMOC emissions, offsetting some of the
potential reductions due to fleet turnover. This may explain why CO emissions did not
change between these years. It is unclear, however, why measured NMOC emissions
decreased over the same period.

In conclusion, emission changes between summers 1994-1995 and 1996-1997 may
be the result of both fleet turnover and changes to gasoline composition. Thus, it would be
inappropriate to use these periods to estimate the pure effect of fleet turnover. Use of
emissions changes between 1994-1995 as an estimate of the fleet turnover effect could
negatively bias an estimate of the RFG effect if reduced gasoline sulfur content between
1994-1995 decreased emissions in the Caldecott tunnel. Any decrease in emissions
between 1994-1995 due to reduced sulfur content should be included in, not subtracted
from, estimates of the RFG effect. Similarly, use of emissions changes between 1996-
1997 as an estimate of the fleet turnover effect may lead to an overestimation of the RFG
effect. More precise estimates of the impacts of RFG would be possible if the fleet
turnover effect was better understood.

2.4.1 Impact of Phase 2 RFG

Despite the uncertainties mentioned above, it was possible to reach several conclusions
about the effects of REG on vehicle emissions. Most notably, the impact of RFG was
larger for NMOC than for NO;. NMOC and NO, showed similar decreases between
1994-1995, whereas NMOC decreased nearly four times more than NO, between 1995-
1996. A clear benefit of RFG use is reduced benzene emissions. Given the emissions
changes reported in Table 2.4, the estimated impact of RFG on benzene emissions was a
30-40% reduction. The large reduction in butadiene emissions between 1995-1996 also
suggests a significant RFG impact. It is not clear why butadiene emissions increased
between 1996-1997. The overall reduction in butadiene from 1995-1997 (26+17%) is
likely a Jower bound estimate of the RFG benefit. Acetaldehyde emissions decreased about
the same amount between each summer, indicating that there was no significant effect of
RFG on acetaldehyde. An increase in acetaldehyde emissions would be expected if ethanol
or ethyl tert-butyl ether (ETBE) were used instead of MTBE (Reuter et al., 1992).
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Formaldehyde emissions increased between 1995-1996 despite the overall decrease
in NMOC emissions, consistent with the increase in gasoline MTBE content (Gorse et al.,
1991). Using the change in formaldehyde emissions between 1994-1995 as an estimate of
the fleet turnover effect, the estimated RFG effect was a 12% increase. As shown in Table
2.4, formaldehyde emissions decreased substantially between 1996 and 1997. This
decrease was due in part to the reduction in NMOC emissions, and to lower MTBE levels
in 1997 gasoline as well (see Table 2.1). In addition, use of different DNPH-impregnated
cartridges in 1997 led to less stable sample air flow rates which may have biased 1997
carbonyl measurements. The decrease in formaldehyde emissions between 1996 and 1997
was larger than expected given the fuel changes that occurred; the formaldehyde emission
factor reported for 1997 appears to have been significantly affected by the change in DNPH
cartridges that were used in field sampling.

Vehicle emissions of MTBE increased due to the introduction of reformulated
gasoline. Emission factors calculated using eq 2.2 and MTBE concentrations shown in
Table 2.3 increased from 26 + 4 mg L'! in 1995 to 160 £ 20 mg L! in 1996, and then
decreased to 110 + 10 mg L-! in 1997. The decrease in 1997 was the result of lower
MTBE content in gasoline. Given that MTBE contributed 11 and 8% of gasoline mass in
1996 and 1997, respectively, and that gasoline density was ~740 g L1, then it follows that
only 0.2% of MTBE in gasoline escaped combustion during tunnel driving.

RFG effects reported here do not apply to the entire California vehicle fleet. In this
study, emissions were measured from on-road vehicles operating in a warmed-up mode,
under loaded conditions, traveling at moderate steady speeds. The effects of RFG on
emissions under cold-start or stop-and-go city driving conditions, and on other vehicle
fleets may differ from those reported here and thus should be studied to assess more
completely the impacts of RFG. For example, Gertler et al. (1997) measured vehicle
emissions in the Sepulveda tunnel in southern California in 1995 and 1996. The vehicle
fleet in that tunnel was about 3 years older, on average, than vehicles observed traveling
through the Caldecott tunnel in the present study. As shown in Figure 2.8, the age
distribution of vehicles traveling through the Caldecott tunnel in summers 1995-1997 was
similar to the age distribution specified by California’s motor vehicle emission inventory
(MVEI) models for the Bay Area. Compared to the age distribution used in MVEI, there
were more current model year vehicles, and fewer of the very oldest vehicles (15 or more
years old) observed in the tunnel. The MVEI age distribution shown in Figure 2.8 already
accounts for the fact that newer vehicles tend to be driven more than older ones.
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Figure 2.8. Observed age distributions of vehicles traveling through the center bore of the Caldecott tunnel. Also shown is the
icle travel by model year as specified in MVEI 7G for the Bay Area.
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2.4.2 Evaporative Emissions

The combined effect of Phases 1 and 2 of California’s RFG program is a reduction of
gasoline vapor pressure of ~20%. About one fifth of the overall reduction occurred
between 1995 and 1996; most of the reduction occurred in 1992 in accordance with Phase
1 RFG specifications. Refueling and diurnal evaporative VOC emissions are expected to
be reduced due to reductions in gasoline vapor pressure.

While use of RFG is expected to reduce evaporative emissions, it should be noted
that, with the exception of running losses, evaporative emissions are not captured or
reflected in the results from tunnel sampling reported in this study.

2.4.3 Implications for Air Pollution Control

A major objective of California’s RFG program is to reduce toxic compound and ozone
precursor emissions from motor vehicles. Motor vehicles contribute about 90% of all
benzene emissions in the San Francisco Bay Area (BAAQMD, 1998). Use of RFG led to
much lower benzene exhaust emissions. Consistent with the large benzene reductions
measured in the Caldecott tunnel, average benzene concentrations in Bay Area ambient air
decreased 56% between summers 1995 and 1996 (BAAQMD, 1998).

Despite difficulties in separating the effect of RFG from fleet turnover, this study
indicated that RFG is more effective in reducing VOC emissions than it is in reducing NOx
emissions. As discussed in the Chapter 3, additional benefits of RFG were found when
the reactivity of evaporative VOC emissions was considered. When coupled with the fact
that diesel engines contribute half or more of mobile source NOy emissions (ARB, 1995;
EPA, 1996; Sawyer et al., 1998), it appears that California’s RFG program is most
attractive as an ozone control strategy in situations where ozone formation is VOC-limited.
The RFG program is effective in reducing benzene emissions regardless of whether ozone
formation is VOC or NOy-limited.
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3 Impact of RFG on Organic Gas Speciation and Reactivity

3.1 Introduction

Use of California reformulated gasoline (RFG) is intended to reduce summertime 0zone air
pollution by reducing emissions of ozone precursors: volatile organic compounds (V oC)
and oxides of nitrogen (NOy). RFG is also intended to reduce emissions of carbon
monoxide and toxic organic compounds. In addition to expected reductions in mass
emission rates, changes to gasoline composition can affect the speciation and reactivity of
VOC emissions. The replacement of high-reactivity compounds such as alkenes with low-
reactivity compounds such as methyl ter-butyl ether (MTBE) in gasoline is expected to
result in corresponding changes in the composition of VOC emissions. Hoekman (1992)
reported significant changes in the speciation of exhaust VOC emissions when vehicles
were fueled with a reformulated gasoline.

While tailpipe exhaust emissions of VOC are important, significant additional
emissions of VOC are associated with gasoline evaporation (Burns et al., 1992; Reuter et
al., 1994; Brooks et al., 1995). Evaporative emissions occur, for example, due to vehicle
fuel system leaks, during refueling, during the "hot soak" period immediately following
vehicle operation, and over the course of a diumal temperature cycle, which causes
pressure changes in the vapor space above liquid fuel in gasoline tanks. Depending on the
mechanism by which evaporative VOC are emitted, the chemical composition may resemble
either whole liquid gasoline or gasoline headspace vapors. The composition of whole fuel
provides a good description of liquid leak emissions, and headspace vapors describe certain
refueling emissions. The compositions of diurnal, hot-soak, and running loss emissions
lie somewhere between these extremes.

The goal of this study was to determine the impacts of California Phase 2 RFG on
pollutant emissions. To this end, motor vehicle emissions were measured in the Caldecoit
tunnel, and gasoline samples were collected from service stations, prior to and after the
introduction of RFG. Changes in the speciation and reactivity of exhaust and evaporative
organic gas emissions that resulted from the switch to RFG are reported in this chapter.
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3.2 Methods

3.2.1 Gasoline Sampling and Analysis

Regular and premium grade gasoline samples were collected from high-volume service
stations located in Berkeley in August 1995 and 1996. The service stations represented the
top five gasoline brands in northern California. Composite liquid samples for each
gasoline grade were prepared by mixing measured amounts of individual samples in a low-
temperature bath. The resulting regular and premium grade composites were sales-
weighted mixtures of the individual brand samples (Gilson, 1995). Analytical results for
these two composite gasoline samples were combined in proportions of 68% by volume
regular and 32% premium to estimate the composition of the overall gasoline pool (Gilson,
1995).

Detailed liquid gasoline speciation was determined for the composite gasoline
samples by gas chromatography (GC) (Kohler, 1997). Analyses were run on a Hewlett-
Packard model 5890 II GC equipped with dual flame ionization detectors (FID) and electric
flow control. Primary analysis was performed using a 60 m DB-1 capillary column of
0.25 mm ID and 0.25 um stationary phase thickness. Secondary analysis was performed
in parallel using a 60 m DB-S capillary column of 0.25 mm ID and 0.25 pm stationary
phase thickness. Where the primary DB-1 analysis suffered from co-elutions, the
secondary DB-5 analysis was used to resolve the co-eluting peaks. Each run was
temperature programmed from sub-ambient to approximately 250 "C. Peak identifications
were based on spiking of authentic samples or corroborated by GC-MS identifications.
Individual hydrocarbon mass response factors in the FID were calculated based on methane
= 1.000. Oxygenate response factors were based on direct calibration with weighed
standards.

3.2.2 Headspace Vapors

The composition of gasoline headspace vapors was predicted using the measured
composition of liquid gasoline. Equilibrium headspace partial pressure for each compound
identified in gasoline was predicted as:

P, =vx; P 3.1

where P; denotes the equilibrium partial pressure of species i in headspace vapor [atm], ¥;
is the activity coefficient of species i in liquid gasoline, x; denotes the measured mole
fraction of species i in liquid gasoline, and P{ is the vapor pressure of pure species i. Ideal
solution behavior (y; = 1) was assumed in the application of eq 3.1. This assumption is
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reasonable for hydrocarbon and MTBE mixtures, but is not valid for ethanol-gasoline
mixtures (Bennett et al., 1993).

Individual compound vapor pressures, P{, were determined with the Wagner
equation:

15, 3. .6
+ +cT +
po at+btC +cet +dt (3.2)
II

where P° = P{/P, is reduced vapor pressure, T; = T/T, is reduced temperature, P. and T,
are critical point pressure [atm] and temperature {K], T = 1 - Ty, and constants a, b,c,and d
are tabulated for numerous organic compounds by Reid et al. (1987). Organic compound
vapor pressures were predicted for T = 311 K (38 °C), the standard temperature for Reid
vapor pressure determination. Parameters used in eq 3.2 to predict individual compound
vapor pressures are given in Appendix D.

It has been noted (Reid et al., 1987) that extrapolation of the more widely-used
Antoine equation to temperatures outside the range for which Antoine coefficients were
determined may lead to serious errors in calculated vapor pressures. The Wagner equation
is more robust and gives the correct shape of a vapor pressure curve over a wider range of
temperatures, from T; = 0.5 to T; = 1.0 (Reid et al., 1987). Only the heaviest constituents
of gasoline have critical point temperatures above 600 K, so the Wagner equation provides
accurate vapor pressure estimates for all of the lighter compounds that are important
contributors to gasoline headspace vapor composition and reactivity.

3.2.3 Field Sampling Site

As discussed in Chapter 2, vehicle emissions were measured in the center bore of
the Caldecott tunnel during summers 1994-1997. Sampling was conducted during the
afternoon commute period from 1600-1800 h when traffic direction through the tunnel was
eastbound (uphill). The vehicles under study were operating in a warmed-up mode.

3.2.4 Vehicle Attributes

Chapter 2 reports in detail the driving conditions and the composition of the traffic in the
tunnel. The main findings are summarized here. The number of vehicles traveling through
the tunnel was consistently about 8400 during each two-hour sampling period. Traffic
flow was generally smooth and vehicles drove through the tunnel at an average speed of
about 60 km h-!. Traffic consisted almost exclusively of light-duty vehicles, about two-
thirds of which were cars and one-third were a combination of pickups, sport utility
vehicles, and small vans. Heavy-duty trucks comprised < 0.3% of the vehicles in the
center bore in each year. The average vehicle age was about 7 years in all four summers,
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and the average vehicle model year was about one year newer each summer. Only 1 to 2%
of the light-duty fleet was diesel-fueled and pre-1975 model year vehicles always
comprised 2% or less of the fleet. Therefore, >95% of the vehicles traveling in the tunnel
were originally equipped with catalytic converters.
3.2.5 Organic Gas Measurements

Pollutant concentrations were measured in the traffic tube ~50 m before the tunnel
exit, and in the clean background air which was injected into the tunnel by ventilation fans.
Background concentrations were subtracted from pollutant concentrations measured inside
the tunnel to determine vehicle emissions. Two-hour integrated air samples were collected
in 6-liter stainless steel canisters for subsequent analysis to quantify hydrocarbon and
MTBE concentrations. Similarly, two-hour integrated samples were collected using
DNPH-impregnated silica cartridges for subsequent analysis to quantify carbonyl
concentrations. Laboratory analytical procedures are discussed in Chapter 2.
3.2.6 Reactivity
The maximum incremental reactivity (MIR) scale developed by Carter (1994) was used to
calculate the reactivity of whole liquid gasoline, gasoline headspace vapors, and on-road
non-methane organic carbon (NMOC) emissions. The MIR scale is defined under
conditions where VOC control is most effective in reducing ozone. Published MIR values
(ARB, 1993a) were combined with detailed chemical composition profiles developed in
this study. Reactivity was expressed per unit mass of NMOC emissions using the
following equation:

R=Y (MIR) w, (3.3)

where R is the normalized reactivity [g of O3 formed per g of NMOC emitted], (MIR); is
the maximum incremental reactivity for species i [g of O3 formed per g of species i
emitted], and w; is the weight fraction of species i in total NMOC emissions. MIR values
used here are included in Appendix A, B, and C.
3.2.7 Quality Assurance
Measured NMOC concentrations were compared with independent analyses of tunnel air
samples collected in parallel in summers 1995-1997. Independent analyses were
performed by the California Air Resources Board, Desert Research Institute, and
Rasmussen.

Measured concentrations of most individual hydrocarbons were in good agreement
with independent analyses. In almost all cases, measured values agreed to within +30%
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for species concentrations above 20 ppbC (total NMOC concentrations in the tunnel were
typically 2 to 4 ppmC). Measured MTBE concentrations were in good agreement with
measurements by Rasmussen, but were 30% higher than values reported by Desert
Research Institute. MTBE was not quantified in tunnel samples analyzed by the Air
Resources Board.

Normalized reactivity was computed for each paired hydrocarbon sample using the
speciation profile reported by each laboratory and eq 3.3. Computed normalized reactivity
(R) for each co-located sample pair agreed within +5%.

3.3 Results

3.3.1 Liquid Gasoline

As shown in summary form in Figure 3.1, the composition of the gasoline pool in 1996
differed markedly from that measured in 1995. Aromatic hydrocarbons constituted 44% of
gasoline mass in 1995, and decreased to 29 wt% in 1996. Benzene content (included with
aromatics in Figure 3.1) decreased from 2.0 to 0.6 wt%. Alkene content decreased from
5.7 to 2.6 wt%, mainly due to a reduction of Cs and C¢ compounds, which comprised
about two-thirds of gasoline alkene mass. These decreases were offset by increases in
gasoline oxygenate and isoalkane content. The increase in oxygenate content from 1 o0 11
wi% was due almost entirely to addition of MTBE to gasoline. Small amounts of tert-amyl
methyl ether (TAME), typically less than 0.1 wt%, were present in some gasoline samples
in both summers. Isoalkane content increased from 32 to 40 wt% between 1995 and 1996.
Notable contributors to the increase in isoalkane content were highly branched, high-octane
alkanes such as 2,2 4-trimethylpentane and 2,3,4-trimethylpentane which increased from
0.92 and 0.43 wt% in 1995 to 3.6 and 1.7 wt% of gasoline in 1996, respectively. Full
liquid gasoline speciation profiles are included in Appendix A.

Figure 3.2 shows the contributions of NMOC groups to the total normalized
reactivity of liquid gasoline. As indicated, aromatic hydrocarbons dominate the reactivity
of unburned gasoline. Comparison of Figures 3.1 and 3.2 illustrates that aromatics and
alkenes contribute more to gasoline reactivity than to gasoline mass, whereas alkanes and
MTBE contribute much less to gasoline reactivity than to gasoline mass. Compared to
unburned liquid gasoline in 1995, the reactivity of RFG was lower by 23%. The decrease
in gasoline reactivity was due primarily to the decrease in gasoline aromatic content. The
replacement of aromatic compounds in gasoline with MTBE was partly responsible for the
decrease in gasoline reactivity because MTBE has low reactivity compared to most high-
octane gasoline hydrocarbons. The reduction in alkene content also contributed to the
reduction in gasoline reactivity.
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3.3.2 Headspace Vapors

Headspace vapor composition profiles for 1995 and 1996 gasoline predicted using eq 3.1
are shown in Figure 3.1. The composition of headspace vapors is heavily weighted
towards the lowest boiling components of gasoline. Low molecular weight alkanes are
abundant; n-butane, n-pentane, and isopentane together accounted for about 50% of total
headspace vapor mass for both 1995 and 1996 gasoline. Lighter aromatics, namely
benzene and toluene, comprised more than 70% of the total aromatic hydrocarbon mass in
headspace vapors. Consistent with changes in liquid gasoline composition between 1995
and 1996, the weight fractions of alkenes and aromatics in headspace vapors decreased, as
shown in Figure 3.1. A large reduction of benzene in headspace vapors, from 1.2 t0 0.4
wt%, contributed more than half of the reduction in aromatics. The weight fraction of
MTBE in headspace vapors rose dramatically from 1.5 to 16.8%. Full headspace vapor
speciation profiles are presented in Appendix B.

As indicated in Figure 3.2, the reactivity of gasoline headspace vapors in 1996 was
19% lower than that of 1995 gasoline. This decrease was mostly due to the reduction of
C4 and Cs alkenes in gasoline. Overall, headspace vapors are less reactive than liquid
gasoline (see Figure 3.2). Normal and isoalkanes, which dominate headspace vapor mass,
have low reactivity. Also, compared to liquid gasoline, headspace vapors are depleted in
the heaviest and most reactive aromatics, such as xylenes and trimethylbenzenes.

Predicted headspace vapor concentrations for the regular and premium grade
gasoline samples were compared to those measured at 38 "C with a Reid vapor pressure
bomb and a GC. GC analyses included determination of individual n-alkanes, isobutane,
isopentane, 3-methylpentane, 3 cycloalkanes, 6 aromatic hydrocarbons, and MTBE. Other
alkanes and aromatics, and all alkenes, were grouped by carbon number, e.g. total Cs
alkenes. As shown in Table 3.1, gasoline headspace vapor composition predicted using eq
3.1 agreed with measured values.

Whereas a fixed temperature of 38 °C was used to measure and predict headspace
vapor composition, a range of temperatures are relevant when considering evaporative
emissions to the atmosphere. However, since vapor pressures of all gasoline components
increase with temperature, the relative abundance of individual VOC in headspace vapors
varies much less with temperature than absolute gasoline vapor pressure. This was
demonstrated by repeating the analysis (eqs 3.1 and 3.2) of headspace vapor composition
using a lower temperature of 24 °C. While the total vapor pressure of gasoline decreased,
predicted headspace vapor composition did not change significantly.
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Table 3.1, Measured and predicted gasoline headspace vapor composition (wt% of total
VOC) for regular and premium grade gasoline samples.

1995 regular 1995 premium 1996 regular 1996 premium

compound meas® pred® meas  pred meas  pred meas  pred
n-butane 9.1 9.3 10.8 113 6.2 6.4 6.0 6.0
isobutane 2.8 3.0 3.7 3.8 1.3 1.4 1.2 1.2
n-pentane 10.5 10.4 7.1 7.0 7.5 7.6 6.0 6.5
isopentane 38 37 40 38 38 34 39 37

n-hexane 2.2 2.1 1.4 1.4 1.7 1.7 0.6 0.8
benzene 1.5 1.3 1.3 1.1 0.5 0.4 0.4 0.3
toluene 2.1 1.8 2.6 2.2 1.2 1.6 1.9 1.6
MTBE 0.0 0.1 4.5 4.8 149 16.0 21.6 187

total Cqalkenes 1.6 1.6 0.8 0.7 1.1 1.1 1.3 1.4
total Cs alkenes 6.8 7.1 4.3 4.9 2.5 2.8 2.8 3.0

total Cg alkenes 2.4 2.2 1.0 1.0 0.8 0.6 1.1 1.1

a Headspace vapor concentrations measured at 311 K with a Reid vapor pressuze bomb and
a GC.

b Equilibrium headspace vapor concentrations predicted using measured composition of
liquid gasoline samples and eq 3.1 (see text).

3.3.3 On-Road Emissions

The composition of NMOC emissions measured in the Caldecott tunnel in summers 1994-
1997 is summarized in Figure 3.3, and given in full detail in Appendix C. Changes to the
composition of NMOC emissions between summers 1995 and 1996 were consistent with
changes in gasoline composition that occurred over the same period. Weight fractions of
total aromatics and benzene in tunnel NMOC emissions decreased from 33 to 26% and 5.4
to 3.3%, respectively, whereas MTBE increased from 0.7 to 5.5 wt%. Consistent with the
addition of MTBE to gasoline, isobutene (included with alkenes in Figure 3.3) increased
from 1.4 to 3.3 wt%, and formaldehyde (included with carbonyls) increased from 1.6 to
2.2 wt%. Other changes in on-road NMOC emissions between 1995 and 1996 included
increases in the weight fractions of isoalkanes and cycloalkanes, and a decrease in the
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unidentified mass from 8.6 to 3.7 wt% of total NMOC. Increases in weight fractions of
trimethylpentanes accounted for about half of the increase in total isoalkane content.

Changes in the composition of NMOC emissions between 1995 and 1996 resulted
in an 8% decrease in reactivity, as shown in Figure 3.4. This reduction was less than the
reductions found for liquid gasoline and headspace vapors because of increased weight
fractions of combustion-derived isobutene and formaldehyde, which have high reactivity.
While tailpipe exhaust is expected to contribute the majority of NMOC emissions in the
tunnel, the 8% decrease in the reactivity of tunnel NMOC emissions may be due in part to
changes in the reactivity of running evaporative emissions. Gertler et al (1996)
apportioned NMOC emissions in the Fort McHenry and Tuscarora Mountain tunnels and
found that exhaust emissions comprised 85%, and evaporative emissions comprised 15%
of total NMOC emissions in both tunnels.

The composition and reactivity of NMOC emissions was similar in summers 1994-
1995 and in summers 1996-1997, as indicated in Figures 3.3 and 3.4. This was expected
since the major changes to the properties of Bay Area gasoline occurred between summers
1995 and 1996. Gasoline MTBE content decreased from 11 to 8% between 1996 and
1997, and consistent with this decrease, weight fractions of MTBE, isobutene, and
formaldehyde in on-road NMOC emissions also decreased.

Figure 3.5 compares the abundance of individual organic compounds in whole
gasoline and tunnel NMOC. A distinctive feature is the linear relationship between the
weight fractions of many individual compounds in tunnel NMOC and in whole gasoline.
This relationship suggests that the origin of a significant fraction of NMOC in the tunnel is
unburned gasoline. Combustion-derived species not present in gasoline, such as
formaldehyde, ethene, propene, and isobutene, contribute significantly to NMOC mass and
influence the overall reactivity of NMOC emissions. Taken together, C,-C, organics plus
isobutene contribute 20% of tunnel NMOC mass and 35% of tunnel NMOC reactivity.
Compounds present in gasoline and found in tunnel NMOC at levels higher than expected
due to emission of unburned gasoline alone, suggest a contribution from running loss
evaporative emissions. As discussed above, n-butane, n-pentane, isopentane, benzene,
and toluene are abundant in headspace vapors. Benzene emissions may also be higher than
expected due to formation of benzene during combustion, and because benzene may escape
oxidation to a greater degree than other gasoline constituents. The abundance of MTBE in
tunnel NMOC is lower than expected based on its concentration in gasoline, indicating that
MTBE may be preferentially oxidized compared to other fuel constituents. This is
consistent with findings reported by Hoekman (1992).
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3.4 Discussion

3.4.1 Fleet Turnover

It was found during the 1994 field campaign (Kirchstetter et al., 1996), that the VOC
speciation profile measured in the Caldecott tunnel for vehicles operating in a hot stabilized
mode more closely resembled cold start exhaust than hot-stabilized emissions from well-
maintained vehicles tested during the Auto/Qil program (Pollack et al., 1990; Hochhauser et
al., 1991). In particular, Caldecott tunnel and cold-start NMOC emissions were abundant
in ethene and acetylene, but depleted in methane. This suggested that on-road emissions
were dominated by vehicles that lacked control of air/fuel ratio, and had reduced catalytic
converter efficiency. As reported here, the composition of on-road NMOC emissions
changed in response to changes in gasoline composition. However, over the course of this
study, fleet turnover did not have a large impact on the speciation of NMOC emissions, as
indicated by the similarity of tunne] NMOC emissions in summers 1994-1995 and
summers 1996-1997 (see Figure 3.3 and Appendix C). The weight fraction of acetylene in
tunnel NMOC was similar from 1994 to 1996, decreased from 2.9 to 2.2% between
summers 1996 and 1997, and is still much higher than measured in new vehicle exhaust
during the Auto/Oil study. The most recent VOC species profile measured in the tunnel in
summer 1997 still closely resembles Auto/Oil cold start emission profiles.

3.4.2 Impact of Phase 2 RFG

Significant changes in the composition of gasoline occurred between 1995 and 1996 as a
result of California’s Phase 2 RFG program. As reported here for the San Francisco Bay
Area, speciation profiles for exhaust and evaporative emissions changed significantly due
to changes in gasoline composition. Liquid gasoline and headspace vapors now contain
smaller amounts of compounds with high reactivity, such as alkenes and Cg+ aromatics.
Emissions of headspace vapors that occur during refueling and emissions of whole
gasoline that result from liquid leaks will therefore be less reactive. The reactivity of
diurnal, hot-soak, and running loss evaporative emissions that have compositions lying
between whole gasoline and gasoline headspace vapors also will be reduced. Therefore,
part of the air quality benefit of Phase 2 RFG will be reductions on the order of 20% in the
reactivity of evaporative emissions.

Inventory estimates for the Bay Area indicate that vehicle exhaust emissions
comprised two-thirds, and evaporative emissions comprised one-third, of summertime
reactive organic gas emissions from on-road motor vehicles before the introduction of RFG
(ARB, 1995). Evaporative emissions that occur during gasoline distribution and refueling
also contribute significantly to organic gas emissions (DeLuchi, 1993). Therefore, the
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reactivity changes reported in this study for evaporative emissions do affect a significant
fraction of organic gas emissions, but smaller reductions in reactivity are expected for
exhaust, which is the larger contributor to total vehicle-related organic gas emissions.

The magnitude of the decrease in reactivity of tunnel NMOC emissions is uncertain
because part of the decrease was due to reduced unidentified mass between 1995 and 1996,
as shown in Figures 3.3 and 3.4. Not counting the change in reactivity due to the decrease
in unidentified mass, the net effect of the other speciation changes in tunnel NMOC
emissions was a 3% decrease in reactivity. This suggests the decrease in reactivity of on-
road NMOC emissions due to RFG is likely between 3 and 8%. Altematively, the effect of
RFG on the reactivity of running emissions can be assessed by comparing NMOC
composition measured in summers 1994 and 1996 since most gasoline properties were
stable between summers 1994 and 1995, and the unidentified fraction of tunnel NMOC
was the same in 1994 and 1996 (see Figure 3.3). Between 1994 and 1996, the reactivity
of tunnel NMOC emissions decreased by 10%.

Reductions in gasoline vapor pressure due to use of RFG will reduce some types of
evaporative emissions. For example, refueling and diurnal evaporative emissions will be
reduced given reductions in gasoline vapor pressure. The ozone-forming potential of
evaporative emissions therefore will be reduced both because of lower mass emission rates
and because of reduced reactivity. Note however, that not all categories of evaporative
emissions are sensitive to fuel vapor pressure. For example, evaporative emissions due to
fuel spillage and leaks depend on the volume of liquid escaping, not the vapor pressure.
3.4.3 Implications for Ozone Control
The reactivity scale (MIR) used here is defined under conditions where VOC control is
most effective in reducing ozone. Reactivity changes reported here are not applicable to
conditions where ozone formation is NO,-limited. Rather than focus on the absolute
values of the calculated reactivities shown in Figures 3.2 and 3.4, it is more meaningful to
consider the changes in reactivity relative to 1995 baseline values. Relative changes in
reactivity are less sensitive than absolute values to environmental conditions, model
assumptions, and NO, availability (Carter, 1994). To illustrate this point, reactivity
calculations for gasoline headspace vapors were repeated using the maximum ozone
incremental reactivity (MOIR) scale (Carter, 1994), under conditions where ozone
formation is less sensitive to VOC emissions. Absolute reactivities were 1.01 and 0.87 g
05 per g of NMOC in 1995 and 1996, respectively. While the calculated reactivities for
headspace vapors using the MOIR scale are much lower than corresponding values based
on the MIR scale (see Figure 3.2), the relative changes in reactivity between 1995 and 1996
are still similar: -19% based on MIR values, and -14% based on the MOIR scale. Thus,
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changes to the speciation of evaporative emissions due to RFG use should lead to a less
reactive mix of VOC emissions over a wide range of atmospheric conditions.
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4 Fine Particles

4.1 Introduction

Engine dynamometer studies indicate that lowering fuel sulfur content reduces emissions of
both sulfur dioxide and particulate sulfate (Wall et al., 1987). Increasing the cetane index,
a measure of how readily diesel fuel autoignites, and lowering the aromatic content of
diesel fuel have been shown to reduce NO, and PM emissions (Ullman et al., 1990;
Nikanjam, 1993). Although carbon monoxide and hydrocarbon emissions from heavy-
duty diesel trucks are of less concern, raising fuel cetane index also tends to reduce
emissions of these pollutants (Ullman et al., 1990).

Prior to 1993, typical diesel fuel in California had an aromatic content of 31% by
volume and a sulfur content (outside of the Los Angeles area) of 0.28% by mass (ARB,
1988). Effective nationwide in 1993, the composition of diesel fuel used for on-road
applications was changed to reduce emissions. Diesel fuel was required to have either a
cetane index of at least 40 or a maximum aromatic content of 35% by volume, and sulfur
content was limited to 0.05% by mass. Additional requirements applicable to fuel sold in
California limited diesel aromatic content to a maximum of 10% by volume (ARB, 1988).
However, most refiners in California have chosen to develop alternative diesel fuel
formulations having higher aromatic content that are less expensive to refine (e.g.,
Nikanjam, 1993). Alternative formulations are allowed if they provide equivalent
emissions reductions. Use of California reformulated diesel fuel was expected to reduce
oxides of nitrogen (NOy), exhaust particulate matter (PM), and sulfur dioxide emissions
from diesel vehicles by 7, 25, and 80%, respectively, in addition to reducing the
carcinogenicity of diesel exhaust (ARB, 1988).

In recent years, diesel engine manufacturers have met increasingly stringent NOx
and PM emission standards through advances in engine and control technology.
Improvements to the fuel injection system including higher injection pressures, improved
control of injection rate, and electronic control for precise timing of fuel injection have
reduced particulate matter emissions. Improved combustion chamber design and increased
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intake air swirl have also led to lower particulate emission levels (Sawyer and Johnson,
1995; Sawyer et al., 1998).

‘Whereas modern light-duty gasoline vehicles equipped with catalytic converters are
generally not high emitters of PM, vehicles that burn oil or run very fuel-rich can have high
PM emission rates. PM mass emission rates from light-duty vehicles that emit visible
smoke (Cadle et al., 1997; Sagebiel et al., 1997), for example, are comparable to measured
emission rates from heavy-duty diesel trucks (Hildemann et al., 1991; Lowenthal et al.,
1994). Oxygenated gasolines (Kirchstetter et al., 1996; Chapters 2 and 3) now used in
many areas of the country aim to reduce carbon monoxide and hydrocarbon emissions from
vehicles that run fuel-rich through enleanment of the air/fuel mixture. Exhaust particulate
emissions resulting from fuel-rich operation may also be reduced through the use of these
gasolines.

In addition to emitting fine particles directly, motor vehicles emit precursor gases
that react in the atmosphere to form secondary particulate matter. In California, secondary
ammonium nitrate derived from direct emissions of NO, comprises a substantial fraction of
fine particle mass during the fall and winter seasons, when ambient fine particle
concentrations are typically highest (Solomon et al., 1989; Chow et al., 1992; Chow et al.,
1993; Chow et al., 1994; Watson et al., 1994a; Chow et al., 1995). In the Los Angeles
Area and the San Joaquin Valley, for example, ammonium nitrate constitutes from one-
third to more than one-half of particulate mass on days with the highest 24 h average
particle concentrations (Solomon et al., 1989; Chow et al., 1992; Watson et al., 1994a).

The recent adoption in the United States of a National Ambient Air Quality Standard
for fine particles smaller than 2.5 pm in diameter (PM3 s) requires a careful characterization
of fine particle emissions from combustion sources such as motor vehicles. Given the
introduction of reformulated gasoline in addition to the changes to diesel fuel and engine
technology mentioned above, an updated assessment of on-road fine particle emissions is
needed. The purpose of this research is (1) to measure on-road PM; s and NOy emission
factors for light- and heavy-duty vehicles, (2) to determine the chemical composition of
PM; s emissions, and (3) to assess the relative contributions of light- and heavy-duty
vehicles to on-road fine particle and NO, emissions.

4.2 Methods

4.2.1 Field Sampling Site

Sampling was conducted in the two traffic bores of the Caldecott tunnel that carry traffic in
the uphill direction: the southernmost bore (bore 1) which was used by both light- and
heavy-duty vehicles, and the center bore (bore 2) which was reserved for light-duty
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vehicles only. Measurements were made in bore 1 from 1230-1530 h when the percentage
of heavy-duty trucks in the vehicle fleet was largest. Vehicle emissions were measured in
bore 2 during the afternoon commuter traffic peak, from 1530-1830 h, when pollutant
concentrations inside the tunnel were highest and traffic consisted almost entirely of light-
duty vehicles. Field sampling took place during July and August of 1997, and included
four days in bore 1 and four days in bore 2, as indicated in Table 4.1.

Table 4.1. Traffic volumes (vehicles h-1) in the Caldecott tunnel, summer 1997.

axle class
date 3+ axles 2-axle/6-tire 2-axle/4-tire % HD diesel

Bore 1 (1230-1530 h)

Jul 21 61 90 2040 4.8

Jul 22 43 82 2208 3.7

Jul 23 60 90 2149 4.6

Jul 24 55 85 2377 3.9
Bore 2 (1530-1830 h)

Jul 31 0 26 3871 0.33

Aug 1 0 24 4115 0.29

Aug 4 2 26 4163 0.36

Aug 5 2 26 4188 0.36

4.2.2 Traffic Characterization

Vehicle attributes and driving conditions inside the tunnel were characterized each day of
the study. Traffic volume, composition, age, and fuel type were determined through visual
counts and license plate surveys. As shown in Table 4.1, traffic volumes in bore 1 from
1230-1530 h were typically 2200 vehicles per hour, and were about half as large as those
in bore 2 from 1530-1830 h. Vehicles were counted in three categories according to
number of axles and tires: 2-axle/4-tire; 2-axle/6-tire; and 3+ axles. The 1992 Truck
Inventory and Use Survey (Bureau of Census, 1992), together with the results of license
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plate surveys conducted at the tunnel, was used to determine the fraction of vehicles in each
axle class that were heavy-duty diesel trucks. Analysis of truck census data for California
suggested that almost all (>99%) vehicles with 3 or more axles are heavy-duty diesel
trucks. License plate surveys conducted at the tunnel during this study (see below) and
during previous summers indicate that <2% of 2-axle/4-tire vehicles are diesel-powered;
most of those that are diesel-powered are light-duty passenger vehicles. The number of 2-
axle/6-tire vehicles that were diesel-powered was less certain. Survey data indicated that
45-68% of these trucks were diesel-powered. The higher value resulted when pickups and
vans as well as single-unit trucks were included in the analysis of survey data. For this
study, we assumed that 50% of the 2-axle/6-tire vehicles were heavy-duty diesel trucks.
Based on these classifications, traffic in bore 1 was estimated to include 4.2% heavy-duty
diesel trucks on average. More than half (56%) of these were large trucks with three or
more axles. By contrast, heavy-duty diesel trucks comprised only 0.3% of traffic in bore
2, and very few of these were large trucks with three or more axles, as indicated in Table
4.1. Traffic in bore 2 consisted of about two-thirds cars and one-third light-duty trucks
(pickups, vans, and sport utility vehicles).

License plates were recorded as vehicles exited the tunnel and were later matched
with vehicle registration data to determine vehicle model year. The average model year of
156 heavy-duty diesel trucks observed in bore 1 was 1988. The average model year of 788
randomly selected light-duty vehicles observed in bore 2 was 1991; fewer than 2% were
pre-1975 model year and based on vehicle registration records only 1.8% were diesel-
powered. Thus, greater than 95% of the light-duty vehicles in bore 2 were originally
equipped with catalytic converters.

Two cars were used to measure the speed of vehicles traveling through the tunnel.
One car was equipped with a computer to log vehicle speed at 1 s intervals, and the second
car was used to measure average traffic speed based on manually recorded transit time
through the tunnel. The average speed of traffic in bore 2 during rush hours (1530-1830 h)
on al] four sampling days was 59 + 10 km h™! (n = 27). Average vehicle speeds inside
bore 1 early in the afternoon (1230-1530 h) were faster because traffic volumes were
smaller. Light-duty vehicles traveled through bore 1 at an average speed of 70 + 9 km h'!
(n = 17) on July 22-24, and 89 + 11 km h'! (n = 8) on July 21. The average speed of
heavy-duty diesel trucks in bore 1 was 65 + 11 km h'! (n = 13). Traffic was generally
smooth flowing; stop-and-go driving and heavy accelerations were rarely observed.

4.2.3 Gaseous Pollutant Measurements
Tunnel pollutant concentrations were measured in the traffic tube ~50 m before the tunnel
exit. Background pollutant concentrations were measured at the fresh air intake ventilation
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fans. Concentrations of carbon monoxide (CO), carbon dioxide (CO3), and NOy were
measured continuously. CO and CO, concentrations were quantified using gas filter
correlation spectrometers (Thermo Environmental Instruments, Franklin, MA, models 48
and 41H, respectively), and NO, was measured with chemiluminescent analyzers (Thermo
Environmental Instruments model 42). Analyzers used to measure pollutant concentrations
inside the tunnel were located in the fan room above the tunnel exit. A ~50 m Teflon
sample line was used to draw air samples directly from the traffic tube.

Using traceable gas standards, zero and span checks were performed several times
a week on each analyzer. The Quality Assurance Section of the California Air Resources
Board conducted a performance audit of the CO and NO; analyzers, as discussed in
Chapter 2.

4.2.4 Continuous Particie Measurements

Particle concentrations in the tunnel were measured continuously and recorded as 15 s
averages using a condensation nucleus counter (CNC), an optical particle counter (OPC),
and an aethalometer. The CNC (model 3760, TSI Inc., St. Paul, MN) measured particle
number concentrations for particles with diameters larger than 0.01 um. The OPC (model
LAS-X, Particle Measuring Systems, Boulder, CO) counted and optically sized particles
with diameters between about 0.1 pm and 2 pm. The optical sizing by the OPC was
calibrated with monodisperse fractions of tunnel aerosol selected using a differential
mobility analyzer. The aethalometer (Magee Scientific, Berkeley, CA) measured a black
carbon mass equivalence by optical attenuation of particles collected on a quartz filter.

The OPC and CNC sampled through 46 m of copper tubing with an inner diameter
of 6.3 mm at a flow rate of 5.2 L min-!. The transport flow was chosen to minimize
particle losses due to turbulence (Re < 1200) or sedimentation. The pressure drop across
this sampling line was 0.035 atm. All inlet tubes for the real-time instruments, including
the sampling line for the gas-phase analyzers, were loosely tied together and inserted down
into the vehicle bore through a ceiling vent, penetrating approximately 30 cm and facing the
oncoming traffic to maximize aspiration efficiency. The aethalometer was placed inside the
tunnel at the same ceiling vent.

A two-stage aerosol dilution chamber was constructed for use with the OPC and
CNC to avoid the presence of multiple particles simultaneously passing the instrument’s
optical sensing region. In each stage, a major portion of the flow (60% for stage one, 99%
for stage two) was siphoned off and filtered. The particle-free air was then recombined
with the aerosol stream. The OPC siphoned off a small portion of the flow at 0.09 L min-!
after the first stage with a dilution factor of 2.6. The CNC sampled at 1.5 L min-! after the
second stage with a combined dilution factor of 380.
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To simplify comparisons among data from different instruments, a single data
acquisition system was used to collect data from the OPC, CNC, and gas analyzers on a
common time basis (15 s averages). The difference in transport times between the real-time
particle sampling line and the gas sampling line was measured to be ~1 s and was
accounted for during the averaging of the gas analyzer signals. The aethalometer, which
was stationed inside the tunnel, was offset by the sampling line transport time for the OPC
and CNC.

Measured particle number concentrations might be biased low due to particle
coagulation inside the 46 m sampling line and/or inside the tunnel. Coagulation is
important within the vehicle exhaust system where primary particle concentrations are
highest and dilution of the exhaust plume has not yet occurred. In the Caldecott tunnel,
vehicle exhaust (which initially contains about 14% by volume CO;) was diluted by a
factor of at least 200:1 before it was sampled. To determine the significance of coagulation
in the tunnel and in the sample line, the characteristic time for coagulation was calculated
(Seinfeld and Pandis, 1998). To be conservative, the highest 3-h average particle number
concentration measured in the tunnel, 4.0 x 10° cm™>, and the smallest particle size
measured, 0.01 pm, were used in the calculation. Using a typical value of the
monodisperse coagulation coefficient, 1.8 x 10- cm® 51, the characteristic time for a 50%
decrease in particle number concentration was calculated to be 46 min. For polydisperse
coagulation with a concentration of 1.4 x 10* cm3 of 0.2 um particles, as indicated by the
OPC, the coagulation coefficient is 5.4 X 10-8 cm® s*! and the characteristic time is 15 min.
These times are long compared to the residence time of air in the sample line (~15 s) and in
the tunnel (~3 min). Sharp increases (spikes) in particle number concentration were
observed in the tunnel over periods of 1-2 min, with the highest values and greatest
variability in CNC counts observed in the diesel truck-influenced bore (bore 1).
Coagulation rates would have been higher when these spikes in particle number
concentration occurred.

4.2.5 Integrated Samples for Particle Chemistry

Filter samples for chemical characterization of PMj 5 particles were collected inside and
outside of the tunnel on each sampling day. Teflon filters were collected for determination
of mass and inorganic ion concentrations, and were analyzed by the California Air
Resources Board laboratory by gravimetry and ion chromatography. Quartz filters were
collected for determination of organic and elemental carbon concentrations, and were
analyzed by the thermal optical technique of Birch and Cary (1996; Sunset Laboratortes,
Beaverton, Oregon). AIHL cyclones (John and Reischl, 1980) operated at 24 L min'!
were used to provide the 2.5 um precut. All filters were 47 mm in diameter. The Teflon
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and Teflon-coated glass fiber filters were collected at 24 L min-!, with one filter per
cyclone. Quartz filters were collected at 12 L min'! by splitting the flow from a single
cyclone. The quartz filters were masked with annular stainless steel shims with an inner
diameter of 24.7 mm to provide the same face velocity as for the Teflon filter samples.
Tandem quartz filters were used on each sampler leg for analysis of carbon particles.

An experimental activated carbon denuder for scrubbing gas-phase organic
compounds was used on one of the quartz filter sampling legs, as shown in Figure 4.1.
The denuder was 10 cm long with approximately 1000 parallel channels. It was
constructed from a block of activated carbon with a square cell structure (product
discontinued, Graphite Sales Inc., Chagrin Falls, Ohio). The flow through each channel
was laminar (Re~10). The Gormley-Kennedy equations (Fuchs, 1964) predict a removal
efficiency of 99.8% for irreversibly depositing gas-phase species, and losses of 3% for
particles with a diameter of 0.05 um (decreasing to less than 1% for 0.1 um particles).
Shedding of carbon from the denuder was tested by drawing filtered air through the
denuder at twice the sample flow rate, with the result that no visible darkening was found
on a downstream filter. Inside the tunnel, tandem quartz filters were collected downstream

Q.
DQ,_. DQ, [ T3 Qe

[ ~ Q
front
<—Et DENUDER

1 4—

T~ CYCLONE

Figure 4.1. Schematic showing arrangement of quartz filters used to sample fine
particulate carbon inside the tunnel. Q denotes quartz filter; DQ denotes denuded quartz
filter located downstream of the activated carbon denuder.
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of this denuder, in parallel to tandem, undenuded quartz filters. Outside the tunnel, quartz
filters were collected with undenuded tandem quartz filters only, with a bypass line in place
of the denuder-filter leg. Prior to use, the denuder was baked at 250 °C for 2 h. Quartz
filters, which were baked before purchase, were again baked at 400-500 °C for 2 h prior to
use at the tunnel.

4.2.6 Emission Factors

Fuel-based pollutant emission factors were computed by relating total carbon emissions in
the tunnel (mainly in the form of CO,) to the carbon content of fuel using the following
equation:

Ep =10° ALP] W, (4.1)
A[CO, ]+ A[CO]

where Ep is the emission factor (g emitted per kg of fuel burned) for pollutant P, A[P] is the
increase in the concentration of pollutant P (lLg m-3) above background levels, A[CO;] and
A[CO] are the increases in the concentrations of CO, and CO (ug of carbon m-3) above
background levels, and w, is the weight fraction of carbon in fuel. Carbon weight
fractions of gasoline and diesel fuel used to calculate emission factors are reported in Table
4.2.

Light-duty vehicle emission factors were computed directly with eq 4.1 and
pollutant concentrations measured in bore 2. Heavy-duty diesel truck emission factors
could not be computed directly from bore 1 measurements because traffic in bore 1
comprised both light-duty vehicles and heavy-duty diesel trucks. Thus, it was necessary to
apportion pollutant emissions in bore 1 to the two vehicle classes.

Prior roadway tunnel studies have shown that heavy-duty diesel trucks and light-
duty gasoline-powered vehicles emit comparable amounts of CO per unit distance traveled
(Pierson et al., 1996). Therefore, a small fraction of A[CO] in bore 1 was attributed to
heavy-duty diesel truck emissions, equal to the fraction of heavy-duty diesel trucks in the
traffic during each sample period. CO, emissions in bore 1 were apportioned using traffic
counts and the fuel economies of light-duty gasoline vehicles and heavy-duty diesel trucks
with the following equation:

A[COz)p _ fo Up Pp Wp
A[CO,]  (fpUpppwp)+((1-fp)UsPg wG)

4.2)
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where A[CO;]p is the component of A[CO-] attributable to heavy-duty diesel emissions, fp
is the fraction of traffic identified as heavy-duty diesel trucks, U is the fuel consumption
rate (reciprocal of fuel economy), p is fuel density, and w is the carbon weight fraction in
fuel. The subscripts D and G denote diesel and gasoline, respectively. Fuel economies,
fuel densities, and carbon weight fractions used to apportion CO» are given in Table 4.2.

For all other pollutants in bore 1, the portion of total emissions contributed by
heavy-duty diesel trucks was determined by subtracting the contribution of light-duty
vehicles. Light-duty vehicle emissions in bore 1 were determined using pollutant emission
ratios measured in the light-duty vehicle bore (bore 2). The contribution from heavy-duty
diesel trucks was expressed as:

— ATP]— 1ty AFL
A[P]p = A[P] - A[CO}- (1-fp) (A[CO]J (4.3)

where A[P]p is the component of A[P] in bore 1 attributable to heavy-duty vehicle
emissions, and A[{CO}-(1-fp) is the fraction of A[CO] in bore 1 attributed to light-duty
vehicle emissions. The pollutant emission ratio for light-duty vehicles, A[P]o/A[CO],, was
measured in bore 2.

Table 4.2. Selected properties of diesel and gasoline fuels.

diesel gasoline
parameter (heavy-duty) (light-duty)
carbon weight fraction, w, 0.872 0.85b
density, p (g L1 840¢ 740°
sulfur, (ppm by weight) 135° 12b
fuel consumptiond (1/100 km) 47 12
fuel sales® (liters) 8.0 x 109 5.1 x 1010

2 Typical properties for diesel fuel (Heywood, 1988).

b Average properties determined from 36 gasoline samples collected in the San Francisco
Bay Area in summer 1997 (McGetrick, 1997).

¢ Average properties determined from diesel fuel samples collected from five Bay Area
refineries (Lum, 1997).

d Measured fuel consumption for uphill traffic in the Fort McHenry tunnel (Pierson et al.,
1996).

¢ On-road taxable fuel sales in California in 1995 (Board of Equalization, 1997).
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4.3 Results and Discussion

4.3.1 OC Sampling Artifact

The measurement of particulate organic carbon concentrations with quartz filters is
complicated by two sampling artifacts: the adsorption of gas-phase organic carbon onto the
filter surface (positive artifact), and the evaporation of organic material from particles on the
front filter (negative artifact). These artifacts have been investigated as they pertain to
sampling in urban and remote environments (Turpin et al., 1994; Eatough et al., 1995;
Eatough et al., 1996; Novakov et al., 1997).

To address this issue for the tunnel samples, parallel samples of denuded and
undenuded pairs of quartz filters were collected, as shown in Figure 4.1. As reported in
Table 4.3, the average OC mass collected on front filters downstream of the activated
carbon denuder was 40% lower than the OC mass collected without the denuder. In
contrast, the BC mass collected on front quartz filters downstream of the denuder (DQfront)
was 90%, on average, of the BC mass collected by the undenuded quartz filters (Qfront)-
The lower BC mass on denuded quartz filters is attributed to particle losses in the denuder.

Compared to filter samples collected without the denuder, vapor adsorption onto
denuded filter samples was diminished. Evaporation of organic aerosol from the front
denuded filter was likely enhanced due to the depletion of gaseous carbon constituents in
the sample air stream. If the denuder was 100% efficient, then the OC found on the
denuded backup filter would be entirely attributable to vaporized organic aerosol from the
front filter. Thus, the OC on the denuded backup quartz filter, DQpack, represents the
upper limit for collection of evaporated organic particle mass by the backup filter. The
upper limit of organic aerosol collected by denuded quartz filters is the sum of the front and
back filters, or DQgon+DQpack- For this data set, the organic carbon collected on DQpack
is small by comparison to that collected by the undenuded backup filter, Qpack. Organic
carbon mass collected on backup filters below the denuded quartz filters, DQpack, was 1/5
to 1/3 of that for the undenuded backup filters, Qpack- Since evaporation from the
undenuded front filter must be less than from the denuded front filter, most of what is
found on the undenuded backup filter, Qpack, must be due to adsorption of gas-phase
organic compounds not adsorbed by the front filter, or the positive artifact. Thus for the
undenuded leg, the particle-phase organic carbon concentration is most closely
approximated by the difference between the front and backup filters, Qfron—Qpack. These
two measures of organic carbon concentration (undenuded, Qfron—Qback; and denuded
DQ#ron+DQpack) are compared in Figure 4.2, with correction for the 10% loss of particles
in the denuded leg indicated from the black carbon measurement. Also shown are
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Table 4.3. Organic carbon (OC) and black carbon (BC) concentrations (ug of carbon
m-3) measured using quartz filters®.

tunnel background
oC BC oC BC
date filter w/oden® denuded® w/oden denuded w/oden w/oden
Bore 1¢ (1230-1530 h)
Jul 21 front 43.6 19.9 48.4 50.4 8.4 3.2
back 3.2 1.4 0.1 0.1 1.2 0.0
Jul 22 front 34.6 21.0 61.4 51.2 10.6f 4.4
back 8.4 3.4 0.0 0.4 3.5 0.5
Jul 23 front 34.1 214 53.7 49.6 6.7 2.3
back 7.2 2.4 0.0 0.0 3.8 0.1
Jul 24 front 33.9 26.0 67.4 57.3 11.5 52
back 5.6 1.4 0.0 0.1 3.6 0.0
Bore 2°¢(1530-1830 h)
Jul 31 front 23.5 15.8 15.5 14.1 6.2 1.7
back 3.8 1.3 0.0 0.0 1.8 0.1
Aug01 front 22.6 15.4 12.3 11.0 4.9 1.7
back 2.8 0.7 0.2 0.1 1.8 0.4
Aug 04  front 26.8 15.3 16.2 13.5 7.5 2.6
back 4.4 0.6 0.0 0.0 2.3 0.4
Aug05  front 25.0 13.8 16.8 14.2 7.7 1.7
back 4.5 0.8 0.0 0.4 2.8 0.9

a The mass of carbon collected was determined using a thermal-optical analytical technique
(Birch and Cary, 1996).

® These quartz filter samples (Q) were collected without the use of an activated carbon
denuder.

¢ These quartz filter samples (DQ) were collected downstream of an activated carbon
denuder used to scrub gas-phase organic compounds from the air stream (see text for
further detail).

d Heavy-duty diesel trucks constituted about 4% of traffic in bore 1.

¢ Bore 2 was reserved for use by light-duty vehicles only.

f An anomalously high value of 53 pg m-3 was measured; sample was probably
contaminated. The value shown in the table was determined based on ambient OC/BC
ratios and the measured background BC concentration on July 22.
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1-standard deviation error limits from the analytical method. With the exception of one
outlier, these two methods of estimating organic carbon are in reasonable agreement. The
bore 1 results fall within the analytical uncertainty of the OC determination; the bore 2
results show a somewhat larger difference, but the two measures of OC agree to within
20%.

Based on these results, corrected particulate organic carbon concentrations inside
the tunnel were calculated as the average of these two values, namely 0.5 X [(Qfront—Qback)
+ f(DQfron+DQpack)] where f=1.1 accounts for particle losses in the denuder. We note
that there may be additional organic carbon lost from the quartz filters by evaporation which
is not collected by the backup quartz filters. However, for these experiments, sample times
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Figure 4.2. Plot of fine particulate organic carbon (OC) concentrations (ugC m-3)
estimated using denuded quartz (DQ) filters versus OC estimated using undenuded quartz
(Q) filters. The factor of 1.1 applied to the denuded filters accounts for particle losses in
the denuder (see text).
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were short, filter samples were at the same temperature as the sampled air, and pressure
drop across the filters was small (0.04 atm). These conditions will minimize evaporative
losses as compared to that found for most ambient sampling conditions.

4.3.2 Pollutant Concentrations

Measured concentrations of CO, CO,, NO,, PM; 5, BC, OC, S0O42-, and particle number
are reported in Table 4.4. Concentrations of most pollutants were significantly higher
inside the tunnel than in background air. For example, average CO, NOy, and PM; s
concentrations measured in bore 1 were 17, 25, and 8 times higher than in background air.
Particle number concentrations were not measured in background air. However,
background levels were estimated from overnight measurements in the tunnel when
concentrations of CO, CO;, and NOy dropped to typical daytime background levels.
Corresponding background particle number concentrations measured using the CNC and
OPC were 5500 and 450 cm?, respectively.

CO and CO; concentrations (above background levels) in bore 1 were 60-70% of
those measured in bore 2, consistent with the lower total traffic volumes observed earlier in
the afternoon in bore 1. In contrast, bore 1 concentrations (again above background levels)
of NO,, PM; 5, and BC were 1.1, 2.8, and 3.8 times the corresponding values measured
in bore 2. This provides evidence that heavy-duty diesel trucks, which were present in
bore 1 but largely absent from bore 2, are much higher emitters of these pollutants than
light-duty vehicles.

4.3.3 Apportionment of Pollutant Emissions

Eq 4.3 was used to apportion emissions in bore 1 for cases where the influence of heavy-
duty diesel trucks was evident (i.e., the emission ratio A[P}/A[CO] was significantly higher
in bore 1 than in bore 2). The apportionment was not attempted in cases where the
influence of diesel trucks on pollutant concentrations measured in bore 1 was small.
Emission factors were computed for the following pollutants: NOy, PMay s, BC, OC,
S042-, and fine particle number concentrations. For these pollutants, measured emission
ratios were consistent from one day to the next. For example, the average NOy to CO ratio
(+ 1 standard deviation) measured in.-bores 1 and 2 were 0.113 £ 0.003 and 0.071 £
0.003, respectively. The apportionment indicated that heavy-duty diesels contributed
approximately 40% of NOy, 55% of OC, 70% of fine particles, 75% of PM3 5 and S04%,
and 85% of BC emissions in bore 1.

Accurate apportionment of emissions with eq 4.3 requires that light-duty vehicle
emissions in bore 1 are well characterized by the emission ratio, A[P},/A[CO]2, measured
for light-duty vehicles in bore 2. Vehicle speeds were typically about 10 km h-1 lower in
bore 2 during the late afternoon sampling period (1530-1830 h) than in bore 1 during the
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earlier afternoon sampling period (1230-1530 h). Given that vehicle speed may affect
pollutant emission factors, it is necessary to consider how vehicle speed affects the
pollutant emission ratio, A[PJ/A[CO]. As reported in Chapter 2, CO emissions in bore 2 of
the Caldecott tunnel increased more than NO, emissions as vehicle speeds increased, so the
A[NOLVA[CO] ratio for light-duty vehicle emissions was lower earlier in the afternoon, as
shown in Figure 4.3. Thus, the A[NOLJ/A[CO] ratio measured in bore 2 from 1530-1830
h may overstate the actual AINO,]/A[CO] emission ratio for light-duty vehicles in bore 1
earlier in the afternoon.

The fraction of total NO, emissions (40%}) attributed to heavy-duty diesels in bore 1
is therefore a lower bound value. Given the uncertainty in the A[NO:J/A[CO] ratio and
NO apportionment due to differences in vehicle speeds, it follows that heavy-duty diesels
could be responsible for as much as 48% of total NO, emissions in bore 1. Thus, the
heavy-duty diesel NOx emission factor may be as much as 20% higher than the value
reported below.

Heavy-duty diesel truck emission factors for other pollutants (BC, OC, SO4%,
PM; 5 mass, particle number concentrations) are less sensitive than the NO, emission
factor to uncertainty in the apportionment using eq 4.3. This is because the diesel exhaust
contribution to these other pollutants in bore 1 is larger than it is for NOy. For example,
light-duty vehicles in bore 1 were estimated to contribute only 15% of BC versus 60% of
NO,. Therefore, the same level of uncertainty in the light-duty emission ratio
(A[P]2/A[CO],) leads to a smaller error in the estimation of heavy-duty diesel emissions of
BC relative to NO,.

Carbon dioxide emissions were apportioned using eq 4.2 because the contribution
of heavy-duty diesels to CO; in bore 1 was toc small for eq 4.3 to produce reliable results
(i.e., the A[CO2)/A[CO] ratio in bores 1 and 2 was about equal). Application of eq 4.2
using measured traffic counts and previously published fuel economies (see Table 4.2)
indicated that heavy-duty diesel trucks were responsible for 17%, on average, of CO;
emissions in bore 1. Based on traffic counts, 4.2% of CO emissions in bore 1 was
attributed to heavy-duty diesel trucks.

There are two sources of uncertainty affecting the apportionment of CO; emissions
in bore 1: use of measured fuel economies from the Fort McHenry tunnel (Pierson et al.,
1996) to represent Caldecott tunnel vehicles, and the classification of 2-axle/6-tire trucks as
gasoline or diesel-powered. Fuel economies shown in Table 4.2 were measured for uphill
driving on a 3.3% grade, whereas the grade in the Caldecott tunnel is 4.2%. If the ratio of
heavy-duty to light-duty fuel economy remains the same as grade changes from 3.3 to
4.2%, this difference will not affect the CO, apportionment. However, it is unknown how
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well the vehicle weight distributions, and therefore fuel economies, match between the two
tunnels. As discussed earlier, there are uncertainties about how many of the 2-axle/6-tire
trucks were truly heavy-duty diesel. If 68% rather than 50% of these trucks are counted as
heavy-duty diesel, then A[CO;]lp calculated using eq 2 would increase, and emission
factors shown in Table 4.5 for heavy-duty diesel trucks would decrease by ~10%.

4.3.4 Fine Particle Emission Rates

Vehicle emission factors, computed as mass of pollutant emitted per kg of fuel burned (eq
4.1), are reported in Table 4.5. Compared to light-duty vehicles, heavy-duty diesel trucks
have higher emission factors for every pollutant listed in Table 4.5. The greatest
differences are for PM5 5, BC, and SO4%, for which emission factors for heavy-duty
diesel trucks were 24, 37, and 21 times higher than for light-duty vehicles. In addition to
having higher fine particle mass emissions, heavy-duty diesel engines emit about 15-20
times the number of fine particles larger than 0.01 pm than do light-duty vehicles per unit
mass of fuel burned. Note that if emission factors were expressed on a per vehicle km

Table 4.5. Light-duty vehicle and heavy-duty diesel truck emission factors® ( 1
standard deviation).

species units HD diesel trucks LD vehicles ratio (HD/LD)
NO,® (g kgD 42%5 9.0+ 0.2 4.6 + 0.6
CNC counts® (#kg!)  (6.3+1.9)x 1012  (4.6+£0.7) x 101° 145
OPCcounts? (#kg!) (2.5+04)x 1011 (1.3£0.05) x 10° 19+3
PM; 5 (g kgh) 2.5+£02 0.11 £ 0.01 24+3
BC (g kgD 13103 0.035 £ 0.003 37+ 10
oCe (g kg’ 0.50 + 0.04 0.053 + 0.008 94+ 15
SO, (mg kg1) 45+8 2104 216

a Emission factors expressed per unit mass of fuel burned, computed using eq 4.1.
b NO, is reported as NO; (i.e., a molecular weight of 46 was used to convert measured
NOy concentrations from ppm to pig m).

¢ The condensation nucleus counter measured particles > 0.01 pum.
d The optical particle counter measured particles in the size range of ~0.1-2 pum.

¢ The mass emission rate of organic carbon was calculated from corrected organic carbon
concentrations shown in Table 4.4.
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traveled basis, the differences between heavy-duty and light-duty emission factors reported
in Table 4.5 would be four times larger because heavy-duty vehicles burn about four times
more fuel per km traveled (see Table 4.2).

In California, on-road diesel fuel sales are one-sixth the volume of gasoline sales
(Table 4.2). Considering the relative magnitudes of light-duty vehicle and heavy-duty
diesel truck emission factors measured in this study, it follows that exhaust emissions of
PM, s and BC from on-road sources are dominated by heavy-duty trucks, which emit
about 80 and 90%, respectively, of the total mass. As noted above, however, visibly
smoking light-duty vehicles can have fine particle emission rates comparable to heavy-duty
diesel trucks. If smoking light-duty vehicles were underrepresented in the present study
then light-duty vehicles would contribute a greater portion of fine particle emissions
statewide. Furthermore, vehicles driving through the tunnel were operating in a fully
warmed-up mode. The possibility of higher exhaust particle emission rates from both cars
and trucks under cold-starting/wintertime conditions has not been considered here.
4.3.5 Chemical Composition of Fine Particles
Carbonaceous material comprised the majority of fine particle emissions. Diesel-derived
particulate was more abundant in black carbon (51+11% of PM, s mass) than light-duty
vehicle particulate emissions, which showed a lower BC fraction (33+4%). Other studies
also report black carbon to be more abundant in particle emissions from heavy-duty diesel
trucks. Reported BC fractions range from 30 to 50% for heavy-duty diesel trucks
(Hildemann et al., 1991; Lowenthal et al., 1994; Watson et al., 1994b), and from 14 to 23%
for catalyst equipped light-duty vehicles (Hildemann et al., 1991; Watson et al., 1994b).

Organic carbon comprised 50+6% of PM;s mass emissions from light-duty
vehicles in the Caldecott tunnel, which agrees with values (30-50%) reported elsewhere
(Hildemann et al., 1991; Watson et al., 1994b). Organic carbon constituted only 20£2%
of PM, 5 mass emissions from heavy-duty diesel trucks, whereas values ranging from 30
to 40% have been reported in the literature (Hildemann et al., 1991; Lowenthal et al., 1994;
Watson et al., 1994b).

Sulfate was a small component of total fine particle emissions, comprising about
2% of total PM 5 mass emissions from both the light- and heavy-duty vehicle fleets. The
sulfate emission factor measured for heavy-duty diesel trucks in the Caldecott tunnel (45
8 mg per kg of diesel burned) is significantly lower than values reported in earlier studies.
Measured heavy-duty diesel sulfate emission rates in the Tuscarora tunnel in 1977 were
about 120 + 15 mg per kg of diesel burned (Pierson and Brachaczek, 1983; Pierson et al.,
1996). Sulfate emission rates measured for heavy-duty trucks in southern California in the
late 1980s were approximately 350 + 60 mg kg! (Hildemann et al., 1991). Lower sulfate
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emissions at the Caldecott tunnel were expected due to the reduction in sulfur content of
diesel fuel since the time of the earlier studies.
4.3.6 Temporal Variability
Concentrations of CO, NO, black carbon mass, and particle number varied considerably
during each 3-h sampling period. Much less variability was observed in the concentration
of CO,, which can be used as a measure of changes in traffic density and the tunnel air
ventilation rate. The relative standard deviation in the measured concentration for each of
these parameters is given in Table 4.6. These values reflect the variability in pollutant
concentrations during a 3-h sampling period. All pollutant concentrations were measured
with 15 s time resolution. Black carbon mass and particle number concentrations were
generally more variable than gaseous pollutant concentrations. CNC counts and NOy
concentrations showed greater time variability in bore 1 than in bore 2. The relative
variation in OPC and aethalometer (black carbon) readings were similar for both bores.
Sample time series of continuously measured parameters are given in Figure 4.4 for
bore 1, and Figure 4.5 for bore 2. Here the parameters are normalized to A[COJ+A[CO,],
as used in eq 4.1. The sum A[COJ+A[CO4] is the increase of gas-phase carbon species
due to fuel combustion in the tunnel, and is used here to correct for variations in the
ventilation rate and traffic density inside the tunnel. The parameters shown are CO, NOy,
black carbon particle mass (AETH), and particle number concentrations in two size ranges.
The line labeled CNC counts corresponds to particles above 0.01 pm; that labeled OPC
corresponds to particles in the 0.1 to 2 um size range.

Table 4.6. Temporal variability in pollutant concentrations within each sampling run.

coefficient of variation?

pollutant bore 1 bore 2
CO, 11% 7.5%
CO 37% 25%
NOy 39% 18%
CNC 58% 36%
OPC 60% 66%
BC 102% 7%

a Average coefficient of variation (6/u) for time-resolved pollutant concentrations measured
inside the tunnel during each 3 h sampling run.
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The time correlation in these parameters was examined to determine whether high
NOy or CO emitters might also be high particle emitters. As is evident from the time series
plots, only the OPC counts and the BC measured by the aethalometer are strongly
correlated (ropc,aery=0.89 in bore 1, and 0.92 in bore 2). This finding is interesting given
that the aethalometer measures black carbon, which is found predominantly in the ultrafine
mode (below 0.12 pm, Venkataraman et al., 1994), whereas the OPC measures
accumulation mode particles.

Other parameters measured in the tunnel are not as well correlated. In bore 1, local
peaks in NO, sometimes correspond to a local peak in CNC counts, and at other times
correspond to local peaks in OPC counts. The CNC and OPC both correlate better with
NOX (I'NOX‘CNC:O.SS and rNOx,OPC=O-50= respectively) than with each other
(tene,oprc=0.32). These correlations are even weaker in bore 2.

4.3.7 NO,; Emissions

On-road NO; emission factors for heavy-duty trucks measured during several roadway
tunnel and remote sensing studies are reported in Table 4.7. As indicated, truck speeds and
roadway grades varied across the different sampling sites. However, measured NOy
emission factors, when expressed on a fuel consumed basis, were consistent from site to
site, and did not exhibit a clear trend with roadway grade/speed. The stability of NO,
emission factors when expressed on a fuel consumed basis supports their use in the
development of fuel-based emission inventories (e.g., Dreher and Harley, 1998).

When combined with fuel density and on-road fuel sales for the state of California
(see Table 4.2) the NOy emission factors shown in Table 4.5 suggest that heavy-duty
diesel trucks are responsible for ~45% of total on-road NOx emissions. Thus, heavy-duty
diesels are a significant source of NOy, nearly equal in importance to light-duty vehicles.
As a whole, on-road vehicles are the largest source (~60%) of NOy emissions in California
(ARB, 1997). Therefore, the contribution of heavy-duty diesel truck emissions to
secondary (ammonium nitrate) fine particle concentrations is expected to be significant.
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Table 4.7. Measured on-road NO, emissions from heavy-duty vehicles.

roadway typical speeds NOy emissions?

study year grade (km h-1) (g kgl)
tunnel

Caldecott (this study)

Oakland, CA 1997  +4.2% 65 £11 2+5
TuscaroraP + +
Tuscarora, PA 1992 level g§7£5 39+3
Fort McHenry? +3.3% 70-80 37+4
Baltimore, MD 1992 _18% 80 3442
Cassiar® 1995 level 90 48+ 17

Vancouver, BC
remote sensing

Raleigh-Durham, NC4 1997 +2.1% 90-110 452

Orange County, CA® 1997 +4.0% 25¢ 31£0.2

2 Emission factors are reported as mass of NOx emitted per kg of diesel fuel consumed.
NOy is reported as NO; (i.e., a molecular weight of 46 was used to convert measured NOx
concentrations from ppm to pg m-3).

b pPierson et al. (1996)

¢ Rogak et al. (1998)

4 Nelson et al. (1998)

¢ Countess et al. (1998)

f Trucks were accelerating on a freeway on-ramp after leaving a weigh station.
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5 Polycyclic Aromatic Hydrocarbons

5.1 Introduction

Combustion-derived aerosol consists of solid carbonaceous particles (black carbon) that are
associated with a complex mixture of organic compounds (Sawyer and Johnson, 1995).
Black carbon contributes significantly to fine particle mass and is an important cause of
atmospheric visibility impairment (Larson and Cass, 1989; Larson et al., 1989). Of the
organic compounds associated with combustion-generated aerosols, polycyclic aromatic
hydrocarbons (PAH) are of particular concern because they are potent mutagens and
carcinogens (Nauss, 1995). Particulate PAH measured in urban air and in roadway tunnels
has been found in the respirable size range (Miguel and Friedlander, 1978; Miguel and
Rubenish, 1980; Miguel and Friedlander, 1984; Venkataraman and Friedlander, 1994:
Venkataraman et al., 1994; Allen et al., 1996).

Characterization of acrosols in motor vehicle exhaust has indicated that PAH
emission profiles are distinct for different vehicle classes. It has been suggested that
selected PAH could be used as tracers for particulate emissions from motor vehicles
(Daisey et al., 1986). Measurements in roadway tunnels carrying both light-duty gasoline
and heavy-duty diesel vehicles indicate that diesel-derived aerosols are enriched in lower
molecular weight PAH (e.g., alkylated phenanthrenes, chrysene), whereas higher
molecular weight PAH are associated with gasoline engine-derived aerosol (Hering et al.,
1984; Benner and Gordon, 1989; Venkataraman et al., 1994). Similarly, dynamometer
measurements on catalyst-equipped and noncatalyst gasoline cars and diesel trucks show
that PAH emissions from diesel trucks are weighted toward lower molecular weight PAH,
whereas gasoline engine exhaust shows a greater abundance of higher molecular weight
PAH (Rogge et al., 1993). The dynamometer tests also indicate that the total aerosol PAH
emission rate per km driven for noncatalyst gasoline-powered cars was 25 times larger than
for catalyst-equipped cars, and 7 times larger than for diesel trucks (Rogge et al., 1993).

PAH in motor vehicle exhaust has a number of possible sources, including
unburned fuel, lubricating oil, and pyrosynthesis. PAH in unburned fuel has been shown
to be the primary contributor to PAH in diesel engine exhaust (Abbass et al., 1989). In
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radiotracer experiments, benzo[a]pyrene in the fuel was found to be the major source of
benzo[a]pyrene in the exhaust of a diesel engine, whereas lubricating oil and pyrosynthesis
combined were found to contribute no more than 20% to benzo[a]pyrene in exhaust
emissions (Tancell et al., 1995). Similarly, unburned fuel was the predominant source of
particle-phase exhaust PAH, from methylfluorenes to benzofa]pyrene, for two direct-
injection diesel engines (Williams et al., 1989). This investigation also concluded that the
pyrosynthesis of lower molecular weight PAH may contribute to exhaust emissions of five-
ring and larger PAH and that lubricating oil affects the behavior of PAH in the combustion
process. Naphthalene surviving combustion has been identified as the source of 24% of
naphthalene in diesel exhaust emissions, and the conversion of 2-methylnaphthalene to
naphthalene in the combustion chamber has been confirmed, also by radiotracer
experiments (Rhead and Pemberton, 1996). Less is known about the origin of PAH in
gasoline engine exhaust, despite the fact that gasoline engines are more important than
diesels as a source of some PAH (Benner et al., 1989; Li and Kamens, 1993; Rogge et al.,
1993).

Numerous studies have quantified PAH in motor vehicle exhaust (Venkataraman et
al., 1994; Benner et al., 1989; Rogge et al., 1993; Westerholm and Li, 1994; Khalili et al.,
1995; Mi et al., 1996), but substantially fewer have examined PAH concentrations in fuels
used by these vehicles. Naphthalene, fluorene, and phenanthrene were found to be the
predominant PAH in French diesel fuel (Pointet et al., 1997). Analysis of eight diesel fuels
in Sweden found phenanthrene, methylphenanthrene, and 2-methylanthracene to be the
most abundant PAH in the fuels (Westerholm and Li, 1994). Another study involving two
diesel fuels in England found that total PAH content of the fuels ranged from 1.7 to 4.5%
and that one fuel had at least 20 times the benzo[a]pyrene content of the other (Abbass et
al., 1989). Mi et al. (1996) found that PAH concentrations ranged up to 11.5 mg L' in a
sample of Taiwanese unleaded gasoline. In general, however, less is known about PAH in
gasoline than in diesel fuel.

In the past, control strategies for motor vehicles emphasized improvements in
engine and emission control technologies. More recently, fuels have been reformulated to
reduce vehicle emissions. For example, oxygenated compounds such as methyl tert-butyl
ether (MTBE) have been added to gasoline (Kirchstetter et al., 1996), and the sulfur and
aromatic contents of diesel fuel have been reduced (Nikanjam, 1993). It is possible that
some types of fuel reformulation might help to reduce PAH emissions from motor vehicles
(Westerholm and Li, 1994). Improved understanding is therefore needed of the relationship
between fuel compositicn and PAH emissions, for both gasoline and diesel engines.
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The goal of this study was to characterize PAH emissions from a current on-road
fleet of heavy-duty diesel and light-duty gasoline vehicles and to characterize PAH in the
fuels used by these vehicles. Specific objectives were to: collect aerosol samples in a
roadway tunnel carrying both light-duty gasoline vehicles and diesel trucks, develop PAH
emission profiles for gasoline and diesel vehicles, determine the size distribution of PAH
emissions, determine emission rates of PAH for light-duty gasoline and heavy-duty diesel
vehicles, and quantify PAH concentrations in commercial gasoline and diesel fuel samples.

5.2 Methods

5.2.1 Field sampling site

Field sampling was conducted at the Caldecott tunnel on weekdays during the period from
August 20 to 28, 1996 and from July 21 to August 5, 1997. Pollutant concentrations were
measured in the traffic tubes ~50 m before the tunnel exit and in the background air injected
into the tunnel by the ventilation fans. Sampling was conducted during uphill (eastbound)
traffic events in bores 1 and 2 of the tunnel. Measurements in bore 2 (center bore) were
made during afternoon rush hours, from 1600-1800 h, when the fleet was almost entirely
light-duty vehicles. Measurements in bore 1, the truck-influenced bore, were made from
1300-1500 h when the fraction of heavy-duty trucks in the vehicle fleet was largest. In
1997, particle sampling times were modified slightly; the sample period was extended to
three hours, 1230-1530 h in bore 1 and 1530-1830 in bore 2.

5.2.2 Pollutant sampling methods

Gas phase measurements included real-time determination of carbon monoxide (CO),
carbon dioxide (CO»), and oxides of nitrogen (NO,) concentrations. Two-hour integrated
air samples were collected in stainless steel canisters for subsequent analysis of
hydrocarbon concentrations. Reported here are tunnel and background CO and CO;
concentrations measured by gas-filter correlation spectrometry (Thermo Environmental
Instruments, Models 48 and 41H, Franklin, MA).

Particle sampling included the collection of time-integrated filter and impactor
samples for subsequent analysis of the chemical composition of the fine aerosol, and real-
time measurement of particle number concentration and size distribution. Tunnel filter
samples were collected for particles in two size fractions: below 1.3 wm (PM;j3), and
below 2.5 um (PM5; 5) aerodynamic diameter. These samples were analyzed for carbon,
mass, ions, and trace metals. Additional samples collected inside the tunnel (PM; ;3 in
1996 and PM3; 5 in 1997) were analyzed for speciated PAH and organics. Background
PM,; samples were collected and analyzed for PAH in 1997. PM;5 samples were
collected at the clean air ventilation intake and analyzed for carbon, mass, ions, and trace
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metals. PM, 5 samples were collected using ATHL cyclones operated at 24 L min-! (John
et al., 1988). PM, 3 samples were collected using the same type of AIHL cyclone operated
at 50 L min-! (John and Reischl, 1980). The 50 L min-! flow was split between two filter
samples to maintain approximately equal face velocity across all filters.

Particle samples for determination of PAH were collected using 47 mm diameter
Teflon-coated glass fiber filters (Pallflex T60A20, Putnam, CT). Size-segregated samples
for PAH analysis were collected inside the tunnel using a low-pressure impactor with size
cuts at 0.05 um, 0.075 um, 0.12 um, 0.26 pm, 0.50 ym, 1.0 um, 2.0 um aerodynamic
diameter (Hering et al., 1978; Hering et al., 1979). Impactor samples were collected onto
glass disks coated with 1 pL of a 2% solution of Vaseline in cyclohexane to prevent particle
bounce. The same impactor was used by Venkataraman et al. (1994) to measure vehicle-
derived PAH. Impactor results are reported for a composite sample collected from 1530-
1830 h on August 21-24, 1997 in bore 2 and from 1230-1530 on July 31, August 1, 4,
and 5, 1997 in bore |

All air flow standards were subjected to a quality assurance audit by the Monitoring
and Lab Division of the California Air Resources Board before field sampling began.
During sample collection, flow rates were monitored with rotameters and pressure gauges.
Each rotameter was calibrated against the audited bubble flow meter for the complete range
of operating pressures used in the tunnel measurements, and final sample volumes have
been calculated accordingly. Impactor flow rates were measured at the beginning and end
of each sampling period. Filter and impactor samples were placed in containers and put in
a freezer within two hours from the conclusion of each sample period.

5.2.3 PAH extraction

In the laboratory, filter and impactor samples were handled under room light shielded with
a yellow filter to avoid photooxidation of PAH. Each 47 mm sample filter was cut in half,
placed in an amber vial and covered with 4 ml of HPLC-grade dichloromethane. PAH
were extracted for 30 min in an ultrasonic bath. The bath water was replaced every 8
minutes to prevent overheating. Extracts were transferred into a disposable plastic syringe
and filtered through a 5 um Spartan-25 syringe filter into an amber vial. The syringe and
filter were washed with dichloromethane and added to the extract. The extracts were
reduced to ~0.5 mL under air at reduced pressure, and were evaporated to dryness under a
gentle stream of helium at room temperature and pressure. Residues were dissolved with
0.25 and 1 mL of HPLC-grade acetonitrile for background and tunnel samples,
respectively. Vials were sealed with a PTFE-lined cap. A second filter extraction was
performed in the same way.
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Similarly, each impactor disk was extracted for 24 min in a covered beaker with 5
mL of HPLC-grade dichloromethane. The extract was filtered into amber vials, the volume
reduced, and the residue taken up with 250 ul. of HPLC-grade dichloromethane. The
extract was rotated over the vial walls and sonicated for 3 min. This step was repeated two
additional times to ensure quantitative transfer. The extract was then transferred into a 250
uL glass insert, mounted with a spring and capped with a PTFE-lined screw cap septum.
5.2.4 PAH separation and quantification
Aecrosol extracts were analyzed for the last ten PAH listed in Table 5.1. Measurements of
vehicle exhaust in prior roadway tunnel experiments show that PAH with molecular
weights > 228 (e.g., benzo[a]anthracene, chrysene, and larger PAH) are entirely in the
particle phase; PAH less volatile than fluoranthene and pyrene have not been found in the
gas phase (Benner and Gordon, 1989). The distribution of fluoranthene and pyrene
between the gas and particle phases is affected by ambient temperature. Concentrations of
lower molecular weight PAH such as naphthalene, phenanthrene, and anthracene were not
quantified in the tunnel air samples, although they were quantified in the gasoline and diesel
fuel samples.

PAH were separated using a Supelcosil LC-PAH, 15 cm, 5 pm column that was
adapted with a Supelcosil guard-column (Supelco, Bellefonte, PA). A mobile phase
solvent gradient of acetonitrile and water (40-100% acetonitrile over 20 min, held at 100%
acetonitrile for 7.5 min) was maintained at a flow rate of 0.9 mL min'! using a Waters
(Milford, MA) 626 pump and associated 600S controller. PAH were quantified using a
McPherson (Acton, MA) FL-Spectrophotometer (150 W Xe-lamp) in the following
configurations: excitation wavelength = 265 nm; emission wavelength = 0.001 (zero
order); excitation and emission slits of 2 and 4, respectively; a CF-300 filter in the emission
side (no filter in the excitation side); sensitivity ranges (R) of 0.03, 0.1, 0.3 and 1.0; time
constant = 0.5 sec; photomultiplier gain = 904; 10 mV output signal into the Waters
SAT/IN module.

The system was calibrated using a Radian (Austin, TX) 16 Priority PAH standard
(no. ERS-010, 10 ug mL-1 in acetonitrile) that was diluted with HPL.C-grade acetonitrile to
produce individual standards of 5, 10, 20 and 50 pg pL-l. Under optimized
chromatographic and instrumental conditions, the detection limits (in picograms) for a 20
uL standard injection were: FLT, 25; PYR, 26; BAA, 13; CRY, 9; BBF, 9; BKF, 7; BAP,
6; BGP, 35; IND, 35; DBA, 67. Each extract was injected at least twice, and sometimes
more when a peak was lost due to saturation in the fluorescence system. Final filter PAH
concentrations were calculated taking into consideration secondary extraction yields, which
averaged ~6% of the mass found in the primary extractions. Analysis precision for the
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standard was ~2%; for the samples it ranged from 2-16%. All reported PAH
concentrations were blank-corrected.

Table 5.1. Sixteen PAH measured in this study.

species name abbreviation molecular weight number of rings
naphthalene NAP 128 2
acenaphthylene ACY 152 3
acenaphthene ACE 154 3
fluorene FLU 166 3
anthracene ANT 178 3
phenanthrene PHE 178 3
fluoranthene FLT 202 4
pyrene PYR 202 4
benz[a]anthracene BAA 228 4
chrysene CRY 228 4
benzo[b]fluoranthene BBF 252 5
benzo(k]}fluoranthene BKF 252 5
benzo[a]pyrene BAP 252 5
benzo[ghi]perylene BGP 276 6
indenof1,2,3-cd]}pyrene IND 276 6
dibenz[a,h]anthracene DBA 278 5

5.2.5 Traffic characterization

Several methods were used to characterize the vehicles traveling through the tunnel. In
1996, visual traffic counts indicated average traffic volumes of 2100 vehicles per hour in
bore 1 from 1300-1500 h, and 4300 vehicles per hour in bore 2 from 1600-1800 h. The
vehicle fleet in bore 2 comprised 66% cars; 34% pick-ups, small trucks, and vans; and <
0.3% heavy-duty trucks. In bore 1, the traffic composition was 62% cars; 32% pickups,
small trucks, and vans; and 6% heavy-duty trucks. A license plate survey of traffic in bore
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2 indicated that 1.5% of the light-duty vehicles were diesel fueled. The mean vehicle model
year was 1990, and < 1% of the vehicles were pre-1975 model year.

The 1992 Truck Inventory and Use Survey (Bureau of Census, 1992) was used to
determine the fraction of heavy-duty trucks in each axle class that were diesel-powered.
Census data for California indicate that a negligible fraction of 2-axle, 4-tire trucks meet the
definition of a heavy-duty diesel truck; ~50% of 2-axle, 6-tire trucks are heavy-duty diesel;
and > 90% of trucks with 3 or more axles are heavy-duty diesel. Using these
classifications and the traffic counts mentioned above, heavy-duty diesel trucks accounted
for 4.7% of total traffic in bore 1 from 1300-1500 h in 1996, whereas the percentage in
bore 2 from 1600-1800 h was < 0.2%. Approximately 70% of the heavy-duty diesels in
bore 1 were large trucks with three or more axles. Traffic counts were similar in 1997.

Driving conditions inside the tunnel were determined using an instrumented vehicle
equipped to log speed at 1 sec intervals. The average speed of traffic in bore 2 during the
1600-1800 h sample period was 66 + 8 km h-! (n = 31). Light-duty vehicles in bore 1
during the 1300-1500 h sample period traveled faster, 79 + 6 km h-! (n = 4), because there
was less traffic congestion in the early afternoon. Heavy-duty trucks in bore 1 traveled at
an average speed of 68 + 11 km h! (n = 16). Average speed measured inside the tunnel in
60 independent drivethroughs confirmed the instrumented vehicle data. Due to merging
traffic and large numbers of vehicles using the tunnel during the 1600-1800 h periods,
traffic was often backed up before entering bore 2. There was less traffic congestion ahead
of the entrance to bore 1 during the 1300-1500 h sample periods because traffic flow was
lighter earlier in the afternoon. During all sample periods, traffic inside the tunnel flowed
smoothly, lacking heavy accelerations and stop-and-go driving.

5.2.6 Fuel sampling

Gasoline and diesel fuel samples were collected in August 1997 using standard sampling
procedures developed by the California Air Resources Board. Gasoline samples were
coliected from service stations in Berkeley and Qakland, representing the five major brands
of gasoline sold in the Bay Area. Regular and premium grades were collected at four of the
service stations, and mid-grade and premium gasoline were sampled at one station.
Approximately 750 mL of each gasoline sample was dispensed from service station pumps
into 1 L steel canisters, and these samples were stored in a refrigerator at 4 ‘C. The
Compliance Division of the Air Resources Board collected five diesel fuel samples from
four oil refineries in the San Francisco Bay Area. These were also stored in 1 L steel
canisters at 4 °C.
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5.2.7 Fuel analysis

Gasoline samples were diluted 10 to 2000 times in n-heptane and were analyzed on a
Hewlett-Packard 5890 gas chromatograph connected to a Hewlett-Packard 5872 mass
spectrometer (GC/MS). The autoinjector was programmed to make 1 ML splitless
injections of all samples and standards onto a 30 m, 25 {m inner diameter, 86% dimethyl,
14% cyanopropyl column (J&W Scientific DB-1701, #05 600 367). The oven temperature
was increased from 40 to 280 °C at a rate of 7 °C min™' and then held at 280 °C for 30 min
for a total run time of 64 min. The mass spectrometer was programmed in single ion mode
to detect two m/z ions for each PAH. PAH were identified by comparing retention times
and ion ratios to those of a reference standard.

The same 16 PAH standard used for HPLC analysis was also used to develop
calibration curves for the GC/MS analysis. In addition to the ten PAH listed in Table 5.1,
it also contained naphthalene (NAP), acenaphthylene (ACY), acenaphthene (ACE),
fluorene (FLLU), anthracene (ANT), and phenanthrene (PHE). The limit of detection for
PAH analysis by GC/MS was ~5 pg L', with slightly lower limits for the low molecular
weight PAH and slightly higher limits for the high molecular weight PAH. The coefficient
of variation for repeat injections of a standard was less than 5% for all sixteen PAH.

Because PAH peaks in diesel fuel samples were difficult to distinguish from other
fuel components, a solid phase extraction technique was used to separate PAH from other
diesel fuel components. The method for PAH separation in the fuel samples was modified
slightly from a published method (Bundt et al., 1991). PAH in diesel fuel samples were
separated by using silica gel cleanup. First, Sep-Pak silica cartridges (Waters
WATO051900, Franklin, MA) were conditioned with 5 ml n-heptane. A 100 pL aliquot of
fuel was added to the top of the column. Fuel components were then eluted in ~2.5 mL
fractions using increasing concentrations (0%, 20%, and 50%) of dichloromethane in
heptane, and fractions were blown down to 2 mL under a gentle stream of nitrogen. This
step may have promoted the loss of more volatile, lower molecular weight PAH. The extent
of the losses are unknown, but this step was required to carry out the analysis. The PAH
eluted mainly with 20% dichloromethane in heptane, although fuels with large amounts of
naphthalene showed this PAH in all fractions. Precision for the solid phase extraction and
subsequent analysis was approximately 25%, and recovery tests of this extraction method
on standards gave mean recoveries ranging from 60 to 115%, depending on the PAH.
Solid phase extraction of gasoline samples followed by GC/MS analysis compared to
analysis without solid phase extraction showed that some of the higher molecular weight
PAH (five rings and more) were lost in the extraction procedure when their concentration in
the fuel was less than ~0.5 mg L.
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5.3 Results and Discussion

5.3.1 Pollutant concentrations

Concentrations of PAH, CO, and CO, measured in the truck-influenced bore (bore 1) and
the light-duty vehicle bore (bore 2) of Caldecott tunnel are presented, together with traffic
count data, in Table 5.2. As indicated in Table 5.2, the PAH concentration profile was
quite different in the two bores. Even though light-duty traffic volumes were higher during
sampling in bore 2, concentrations of lower molecular weight PAH (FLT, PYR, and BAA)
were much higher in the truck-influenced bore (bore 1) than in the light-duty vehicle bore
(bore 2). This suggests that heavy-duty diesel trucks emit much more of these lower
molecular weight PAH than do light-duty vehicles. Conversely, concentrations of higher
molecular weight PAH (BGP, IND, and DBA) were higher in bore 2 compared to bore 1.
Concentrations of CRY, BBF, and BKF were similar in both bores in 1996.

Compared to 1996 observations in the light-duty bore, PAH concentrations were
slightly higher in 1997 for the first seven PAH and BGP. The concentration of IND was
slightly lower, and DBA was significantly lower in 1997. Increases in PAH concentrations
were expected given the higher cutpoint (2.5 pm) used in collecting particle samples in
1997 versus the 1.3 pm cutpoint used in 1996. In bore 1, concentrations of the first seven
PAH also were higher in 1997, as expected. Concentrations of the three heaviest PAH,
especially DBA, were lower in 1997.

Average PAH concentrations measured in bore 2 were compared to a PAH profile
measured previously for gasoline engine exhaust (Li and Kamens, 1993). The profiles
were highly correlated (r = 0.93), indicating that gasoline engines were the dominant
contributor to PAH emissions in bore 2. This is not surprising because light-duty gasoline
vehicles comprised ~98% of traffic in bore 2, and most of the remaining vehicles in bore 2
were light-duty diesel.
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Table 5.2. Measured pollutant concentrations and vehicle counts at the Caldecott tunnel.

1996 measurements

bore 2 (1600-1800 h) bore 1 (1300-1500 h)
species Aug 20 Aug 21 Aug 22 Aug 23 Aug 28
tunnel PAH? (ng m-3)
FLT 3.1 3.3 17 25 17
PYR 3.2 4.0 22 37 25
BAA 1.8 2.0 5.8 8.1 5.2
CRY 2.9 2.8 4.0 5.3 3.5
BBF 3.1 3.0 2.7 3.8 2.3
BKF 1.1 0.86 0.75 0.85 0.5
BAP 2.9 2.3 1.0 NAb 1.1
BGP 7.2 7.3 1.7 2.6 1.2
IND 3.9 3.3 0.6 1.3 0.8
DBA 5.9 7.1 2.2 2.5 1.6
tunnel CO (ppm) 28.0 26.9 19.6 21.2 20.7
background CO (ppm) 0.8 0.6 1.7 2.4 3.2
tunnel CO, (ppm) 1017 1011 719 763 735
background CO; (ppm) 347 346 364 383 410
traffic count (vehicles h-1) 4400 4300 2100 2200 2100
% HD diesel® 0.07 0.2 4.6 4.6 4.8

a Pollutant concentrations determined from PM, 5 samples collected in the tunnel bores.

b Not available. The concentration of BAP was not determined for this filter sample
because an instability in the spectrophotometer resulted in signal saturation during analysis
of this peak.

¢ Percentage of heavy-duty diesel trucks in the tunnel vehicle fleet.

¢ Pollutant concentrations determined from PM, ; samples collected in the tunnel bores.

¢ Filters from two days of sampling were extracted and combined prior to quantification of
PAH.
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Table 5.2. continued.

1997 measurements
bore 2 (1530-1830 h) bore 1 (1230-1530h)

species Jul 31 Aug4 Jul 21 Jul 23
Aug I° Aug 5 Ju] 22 Jul 24
tunnel PAH4 (ng m-3)
FLT 4.7 4.9 32 31
PYR 6.2 6.8 41 41
BAA 3.3 3.9 8.9 10
CRY 3.2 3.8 7.8 9.0
BBF 3.5 3.1 5.7 6.8
BKF 1.2 1.1 3.0 3.6
BAP 3.3 3.2 7.6 8.4
BGP 8.5 8.0 1.0 2.3
IND 3.1 2.8 0.32 0.73
DBA 0.59 0.49 0.57 0.41
tunnel CO (ppm) 26.8 27.6 18.0 194
background CO (ppm) 0.9 1.1 1.1 1.2
tunnel CO; (ppm) 977 1072 728 764
background CO; (ppm) 367 386 370 375
traffic count (vehicles h-t) 4000 4200 2300 2400
% HD diesel® 0.3 0.4 4.2 4.3

a Pollutant concentrations determined from PM, 3 samples collected in the tunnel bores.

b Not available. The concentration of BAP was not determined for this filter sample

because an instability in the spectrophotometer resulted in signal saturation during analysis
of this peak.

¢ Percentage of heavy-duty diesel trucks in the tunnel vehicle fleet.

4 Pollutant concentrations determined from PM,  samples collected in the tunnel bores.

¢ Filters from two days of sampling were extracted and combined prior to quantification of
PAH.
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Table 5.3. Selected properties of gasoline and diesel engines and fuels.

gasoline diesel
parameter (light-duty) (heavy-duty)
carbon weight fraction, w, 0.85a 0.87b
density, p (g L) 7432 830p
fuel consumption (L/100 km) 47c 12¢

2 Average properties determined from 36 gasoline samples collected in the San Francisco
Bay Area in summer 1996 (McGetrick, 1997).

b Typical properties for diesel fuel (Heywood, 1988).

¢ Measured fuel consumption for uphill traffic in the Fort McHenry tunnel (Pierson et al.,
1996).

5.3.2 Emission factors
Fuel-based emission factors for individual PAH were calculated from measured poltutant
concentrations in bores 1 and 2 of the tunnel using eq 4.1. In order to facilitate comparison
between 1996 and 1997 emission factors, they were not corrected for background
concentrations, which were measured in 1997 only. Ambient PAH concentrations
amounted to an average of 6% of tunnel PAH concentrations on bore 2 sampling days and
were higher on bore 1 sampling days but showed evidence of contamination by tunnel
exhanst. Pollutant emissions in bore 1 were apportioned between light-duty vehicles and
heavy-duty diesel trucks using eqs 4.2 and 4.3 as outlined in Chapter 4. Properties of
gasoline and diesel fuels and engines used to calculate PAH emission factors are shown in
Table 5.3.

Heavy-duty diesel trucks were estimated to have contributed 80-90% of the FLT,
PYR, and BAA in bore 1, whereas all of the DBA, BGP, and IND in bore 1 could be
attributed to light-duty vehicles in 1996.

Emission factors for particle phase PAH calculated using eq 4.1 are reported in
Table 5.4. Emission factors are reported as mass of pollutant emitted per unit mass of fuel
burned. When comparing emission factors, it is important to note that by weight, ~6 times
more gasoline than diesel fuel is sold for use by on-road vehicles in California. Therefore,
in cases where the emission factors shown in Table 5.4 are comparable, light-duty vehicles
are the dominant source. Heavy-duty diesel trucks are the dominant on-road source of
black carbon and lighter PAH such as FLT, PYR, and BAA; light-duty vehicles are the
major source of heavier PAH including BGP, IND, and DBA.

Some changes in emission factors were evident between 1996 and 1997. For light-
duty vehicles, PAH emission factors were higher by no more than a factor of two in 1997
than in 1996 for all species except IND, which had a slightly lower emission factor in
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1997, and DBA, which had a significantly lower emission factor in 1997. Higher particle-
phase PAH emission factors were expected because of the higher cutpoint diameter (2.5
versus 1.3 pm) used in 1997 particle sampling. For heavy-duty vehicles, emission factors
were significantly higher in 1997 for CRY, BBF, BKF, and BAP. Note, however, that as
discussed in Chapter 4, there are larger uncertainties associated with the heavy-duty diesel
emission factors because of the need to apportion pollutant concentrations in bore 1
between light- and heavy-duty vehicles.

Table 5.4. Fine particulate PAH mass emitted per kg of fuel burned for light-duty
vehicles and for heavy-duty diesel trucks in the Caldecott tunnel.

light-duty vehicles heavy-duty diesel
(ug kg'!) (ug kg'h)

species 1996 1997° 1996* 1997°
FLT 80£03 123+ 0.6 480 £ 100 785+ 79
PYR 90£15 16.6 £ 0.2 690 + 170 1009 + 74
BAA 48104 9.1+03 140+ 30 203+ 13
CRY 70£0.1 9.0£0.5 66+ 20 170+ 8
BBF 7.6+0.3 8§4%14 25+ 17 115+ 12
BKF 25204 3.1 £04 28x25 71+6
BAP 64+ 1.1 8509 NS¢ 162t 1
BGP 18.0x£ 0.3 213 +27 NS NS
IND 9.0+ 1.1 77x1.1 NS NS
DBA 16.2 2.1 1.4 +0.3 NS 41+£39

* PAH associated with particles < 1.3 um aerodynamic diameter (PM, ,).

® PAH associated with particles < 2.5 pum aerodynamic diameter (PM, ;). Higher values are
expected because of the higher cutpoint diameter used in summer 1997 particle sampling.

° Not a significant source. Use of eq 4.3 to apportion individual PAH in bore 1 indicated
that gasoline vehicles could account for 100% of these PAH emissions.
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5.3.3 PAH size distributions

PAH size distributions measured in bores 1 and 2 in 1997 are shown in Figures 5.1 and
5.2, respectively. PAH were found mainly in two modes centered at 0.1 and 1 um. More
PAH was found in the ultrafine mode relative to the accumulation mode in bore 2. In this
bore, as PAH molecular weight increased, in general more of the PAH was found in the
vitrafine mode (<0.26 pm) and less in the accumulation mode (0.26-4 pum). The average
ratio of ultrafine mode particle-phase PAH concentration (0.05 to 0.26 pm) to
accumulation mode concentration (0.26 to 4 um) for FLT through CRY was 1.2, while for
BBF through BGP it was 6.5. This ratio was 1.3 for IND and DBA, but the tunnel
concentrations of these PAH were not significantly above background. In bore 1, there
was not a clear relationship between the molecular weight of the PAH and the size
distributions. The average ratio of accumulation mode to ultrafine mode concentration was
1.9 for all PAH in this bore.

The total mass concentrations measured by low-pressure impactor (Figures 5.1 and
5.2) versus filter (Table 5.2) were similar for most PAH. In the light-duty bore, impactor-
derived concentrations of DBA were significantly higher than filter-derived concentrations.
In the truck-influenced bore, impactor-derived concentrations of FLT, PYR, BBF, BKF,
and BAP were higher than filter-derived concentrations, and the reverse was true for BGP.
The reasons for these differences are unclear.

PAH size distributions shown in Figures 5.1 and 5.2 explain some of the increase
in emission factors in 1997. The expected increase in the mass of PAH collected in
changing from a 1.3 to 2.5 pum cutpoint diameter can be estimated by calculating the
percent increase in mass associated with particles less than 1 pm compared to mass
associated with particles less than 2 pm. In bore 2, this factor accounts for 2-48% increase
in PAH collected, and the increase in bore 2 emission factors in 1997 are generally
consistent with this range except for IND and DBA. In bore 1, the comparison of mass
distribution to changes in emission factors is complicated by the need to apportion
pollutants between light- and heavy-duty vehicles, but for the four ring and smaller PAH
whose emissions are dominated by heavy-duty diesel trucks, the change in cutpoint
diameter should account for a 12-28% increase in PAH collected. This alone does not
explain the observed increases in heavy-duty diesel PAH emission factors; uncertainties in
the apportionment of pollutants are likely to account for the remaining differences.
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Figure 5.1. Size distribution and total mass concentration (M) of PAH measured in summer 1997
with a low-pressure impactor in the truck-influenced bore (bore 1) of the Caldecott tunnel.
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Figure 5.2. Size distribution and total mass concentration (M) of PAH measured in summer 1997
with a low-pressure impactor in the light-duty vehicle bore (bore 2) of the Caldecott tunnel.
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5.3.4 Fuel PAH concentrations

Measured PAH concentrations in each gasoline sample are shown in Table 5.5. On
average, NAP contributes 97£1% of the total concentration of the 16 PAH measured.
Variation of PAH concentrations among different brands of gasoline is greater than
variation between regular and premium grades of the same brand. Within a single brand,
premium gasoline tends to have higher PAH concentrations than regular grade, and
typically, PAH concentrations are no more than 50% higher or lower in one grade than
another. One brand of gasoline (E) has markedly lower PAH concentrations than the other
four brands. Concentrations of PAH other than ACY are 5 to 500 times lower in brand E
gasoline relative to other brands. Differences in crude oil properties and/or in refinery
operations may explain the much lower PAH content of brand E gasoline.

Measured PAH concentrations in each diesel sample are shown in Table 5.6. The
fraction of NAP in the diesel fuels is not as consistent as in gasoline; in diesel fuel, NAP
contributions range from 4% in brand 5 to 95% in brand 4 of the total PAH measured.
Some of this variability may be due to loss of lower molecular weight PAH during blow
down of the diesel fuel samples. Like gasoline, the diesel samples show large variations in
PAH concentrations among different brands. Samples 2 and 5 have lower PAH
concentrations than the other brands. Note that the gasoline samples do not correspond in
brand to the diesel fuel samples collected in this study.
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Table 5.6. PAH concentrations in Bay Area diesel fuel samples, summer 1997

species 1 2 3 4 5

(mgL™)
NAP 1600 30 280 570 6.6
ACY 1.4 0.28 1.7 0.53 3.7
ACE 59 14 33 5.1 28
FLU 150 30 110 11 < lod
ANT 240 15 93 8.6 36
PHE < lod® <lod <lod < lod < lod
FLT 3.5 0.071 0.90 0.089 <lod
PYR 39 6.7 15 4.9 86
BAA <lod <lod <lod < lod <lod
CRY <lod < lod 2.5 <lod <lod
BBF < lod <lod <lod < Jod <lod
BKF <lod <lod < lod <lod <lod
BAP < lod <lod <lod < lod <lod
BGP 2.5 < lod <lod <lod 0.93
IND < lod <lod < lod <lod <lod
DBA <lod <lod < lod <lod < lod

" ess than limit of detection, ~0.1 mg L™.

Figure 5.3 summarizes the average concentrations of the sixteen PAH in gasoline
and diesel fuel samples. In calculating the mean PAH concentrations, brands were
weighted equally, and for gasoline, different grades within each brand were weighted
according to the market share of each grade: 58% regular, 20% mid, and 22% premium
(Gilson, 1995). The market share of mid-grade was divided equally between regular and
premium, resulting in weightings of 68% for regular and 32% for premivm. For one brand
of gasoline (B) for which no regular grade sample was available, a mid-grade sample was
analyzed instead. Values below the limit of detection were treated as zeroes.
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Figure 5.3. Average PAH concentration (X1 standard deviation) in ten gasoline samples
and five diesel fuel samples.

PAH concentrations in the fuels ranged from undetectable for several of the higher
molecular weight PAH in diesel fuel to ~1000 mg L' for NAP in both gasoline and diesel
fuel. While fifteen of the PAH, all but DBA, were detected in gasoline, only nine were
detected in diesel fuel. Notably absent from diesel fuel were five of the six highest
molecular weight PAH; a similar trend was observed in exhaust emissions in the tunnel.
Diesel fuel contained five to ten times more of all the three ring PAH except PHE, which
was difficult to quantify. In contrast, gasoline contained higher concentrations of all the
four and five ring PAH except PYR.

5.3.5 Relationship between fuel and exhaust PAH

For gasoline-powered vehicles, PAH emission factors were correlated with fuel PAH
concentrations (R* = 0.79, excluding BGP). Figure 5.4 shows the emission factor for ten
PAH plotted versus PAH concentration in the fuel. Fuel PAH concentrations have been
converted from mg L' to mg kg' by dividing by the gasoline density. In general, those
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PAH with higher concentrations in gasoline also had higher emission factors. BGP, a five
ring PAH, had an unusually high emission factor relative to its fuel concentration.
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Figure 5.4. Light-duty PAH emission factor versus PAH concentration in gasoline.

PAH in motor vehicle exhaust can have several sources: PAH in fuel that escapes
combustion, PAH in lubricating oil, and pyrosynthesis. If the relative concentrations of
PAH in fuel escaping combustion remained the same as in the original fuel and if this were
the only source of PAH in the exhaust, then a linear relationship between emission factor
and fuel concentration would be expected. In Figure 5.4, most of the PAH fall near a line
of slope 6 ug mg™, i.e. 6 ug of PAH emitted per mg of PAH in gasoline. For comparison,
0.48% (4.8 pg mg') of naphthalene in diesel fuel was found to survive combustion in
radiotracer experiments involving a diesel engine (Rhead and Pemberton, 1996). BGP has
a much higher emission factor relative to its fuel concentration than other PAH in Figure
5.4, which suggests that other sources such as lubricating oil and/or pyrosynthesis are

significant.
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Figure 5.5. Heavy-duty diesel PAH emission factor versus PAH concentration in diesel
fuel.

Comparison of emission factors and fuel concentrations for diesel, shown in Figure
5.5, was less informative. First, only four of the ten PAH measured in the tunnel were
detected in diesel fuel: FLT, PYR, CRY, and BGP. Four PAH (BAA, BBF, BKF, and
BAP) were not detected in the fuel but did have measurable emission factors. It is possible
they were present in diesel fuel at levels below the limit of detection or that they have
sources other than unburned fuel. BGP was found in the fuel but not in the exhaust, while
DBA was found in the exhaust but not the fuel. IND was not detected in either diesel fuel
or diesel exhaust. For the three PAH for which matched diesel fuel and tunnel data are
available, the ratios of emission factors to PAH concentrations in diesel fuel are 720, 28,
and 290 ug mg"' for FLT, PYR, and CRY, respectively. Some of the lower molecular
weight PAH in diesel exhaust may originate from unburned diesel fuel, but the presence of
higher molecular weight PAH in diesel exhaust which are not found in the fuel suggests
that these PAH originate from other sources such as lubricating oil or pyrosynthesis.
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6 Summary and Conclusions

The impacts of reformulated gasoline use on light-duty motor vehicle emissions have been
assessed through measurements of pollutant concentrations in the Caldecott tunnel and the
analysis of gasoline samples collected in the San Francisco Bay Area. Changes in vehicle
emission rates of gas-phase pollutants including: carbon monoxide (CO), oxides of
nitrogen (NO,), non-methane organic compounds (NMOC), benzene, formaldehyde,
acetaldehyde, 1,3-butadiene, and other C;-C;( organic compounds have been assessed.
New chemical speciation profiles for NMOC and particulate matter emissions representative
of vehicles using reformulated gasoline and low-sulfur, low-aromatic diesel fuel were
developed. Heavy-duty diesel truck and light-duty vehicle exhaust emissions of fine
particulate matter and oxides of nitrogen were measured, and the relative contributions of
both vehicle types to air pollution were evaluated.

6.1 Reformulated Gasoline

The introduction of California Phase 2 reformulated gasoline (RFG) in the San Francisco
Bay Area resulted in large changes to gasoline composition including: an increase in
oxygen content from 0.2 to 2.0 wt%; and decreases in alkene, aromatic, benzene, and
sulfur contents. Gasoline density and Tsg and Ty distillation temperatures also decreased.
Most of these changes occurred between summers 1995 and 1996. Light-duty vehicle
emission rates measured in the Caldecott tunnel during summers 1994-1997 were used to
evaluate the exhaust emission impacts of RFG use. Vehicle speeds and driving conditions
inside the tunnel were similar each year. The average model year of the vehicle fleet was
about one year newer each successive summer. Large reductions in pollutant emissions
were measured in the tunnel over the course of this study, due to a combination of RFG
and fleet turnover effects. Between summers 1994 and 1997, emissions of CO decreased
by 31 £ 5%, non-methane organic compounds decreased by 43 £ 8%, and NOy decreased
by 18 +4%. It was difficult to separate clearly the fleet tumover and RFG contributions to
these changes. Nevertheless, it was clear that the effect of RFG was greater for NMOC
than for NOy. The RFG effect on vehicle emissions of benzene was estimated to be a 30-
40% reduction. Use of RFG increased formaldehyde emissions by about 10%, while
acetaldehyde emissions did not change significantly.

938



The switch to reformulated gasoline also affected evaporative emissions. The
combined effect of Phases 1 and 2 of California’s RFG program was a 20% reduction in
gasoline vapor pressure, about one fifth of which occurred following the introduction of
Phase 2 RFG. A model was developed to predict equilibrium gascline headspace vapor
composition from measured liquid gasoline composition. Addition of MTBE and reduction
of alkenes and aromatics in gasoline between summers 1995 and 1996 led to corresponding
changes in the composition of gasoline headspace vapors. Normalized reactivity of liquid
gasoline and headspace vapors decreased by 23 and 19%, respectively. Reduced mass
emissions due to lower gasoline vapor pressure, together with reduced normalized
reactivity of gasoline and its vapors, both decrease the ozone formed due to gasoline
evaporation. The reactivity of on-road emissions measured in the tunnel decreased by ~5%
or less. The reduction in reactivity of on-road emissions was less than that of evaporative
emissions because of increased weight fractions of highly-reactive isobutene and
formaldehyde in vehicle exhaust, which resulted from the increased use of MTBE in
gasoline.

6.2 Fine Particles

An updated assessment of fine particle emissions from light- and heavy-duty vehicles was
needed due to recent changes to the composition of gasoline and diesel fuel, more stringent
emission standards applying to new vehicles sold in the 1990s, and the adoption of a new
ambient air quality standard for fine particulate matter (PM; 5) in the United States. In the
summers of 1996 and 1997, separate measurements were made of uphill traffic in two
bores of the Caldecott tunnel: one bore carried both light-duty vehicles and heavy-duty
diesel trucks, and the second bore was reserved for light-duty vehicles.

Compared to gasoline-fueled light-duty vehicles, heavy-duty diesel trucks were
found to emit 24, 38, and 21 times more fine particle, black carbon, and sulfate mass per
unit mass of fuel burned, respectively. In addition, heavy-duty diesel trucks emitted 15-20
times the number of fine particles per unit mass of fuel burned compared to light-duty
vehicles. Fine particle emissions from both vehicle classes are composed mostly of carbon;
diesel-derived particulate matter contains more black carbon (51+11% of PM3 5 mass) than
does light-duty fine particle emissions (33+4%). Sulfate comprises only 2% of total fine
particle emissions for both vehicle classes. Sulfate emissions measured in this study for
heavy-duty diesel vehicles are significantly lower than values reported in earlier studies
conducted before the introduction of low-sulfur diesel fuel. Diesel trucks were the major
source of lighter PAH, whereas light-duty gasoline vehicles were a significant source of
higher molecular weight PAH. Size-resolved measurements of particulate PAH showed
significant fractions of diesel-derived PAH to be present in both the ultrafine size mode
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(<0.12 um) and the accumulation mode (0.12-2 pm). In contrast, the ultrafine mode was
more prominent for gasoline engine-derived PAH emissions. Light-duty vehicle exhaust
emission factors for PAH were correlated with PAH concentrations in gasoline.

Combination of measured emission factors and fuel consumption data indicates that
diesel vehicles in California are responsible for nearly half of NO, emissions and greater
than three quarters of exhaust fine particle emissions from on-road motor vehicles.
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7 Recommendations

7.1 Continued On-Road Surveillance

The introduction of new gasoline formulations throughout the state of California provided
unique opportunities to assess the impacts of changes in gasoline composition on motor
vehicle emissions. The measurement of vehicle emissions in a heavily used roadway
tunnel facilitated the characterization of a wide range of gas- and particle phase pollutants
from thousands of vehicles driven under real-world conditions. The trends in vehicle
emissions recorded during this multi-year research project illustrate the effects of changes
in gasoline composition and an evolving vehicle fleet. Continued surveillance of on-road
emissions is highly recommended to provide a clear picture of the emission impacts of fleet
turnover. A better understanding of the effects of fleet turnover will be needed to track the
changing contribution of motor vehicles to air pollution problems in the future.

As a result of increasingly stringent emission standards and increasingly robust
emission control equipment, the on-road vehicle population will include growing numbers
of very clean vehicles. Emission rates of CO, VOC, and NO, will likely decline, but
emission rates of other pollutants may increase. Fraser and Cass (1998) reported increased
on-road emissions of ammonia since the introduction of the 3-way catalytic converter.
Others (Dasch, 1992; Berges et al., 1993) have reported increased emissions of nitrous
oxide from catalyst-equipped vehicles. On-road monitoring will be helpful for tracking
emission trends for these pollutants over time.

While no further changes to fuel composition are currently required in California,
continued efforts to reduce vehicle emissions may lead to rethinking of fuel reformulation
requirements. Concerns about ground and surface water contamination may lead to the
elimination or reduction of MTBE in gasoline (Nakamura, 1998). Diesel engine
manufacturers have expressed interest in reformulated diesel fuel to help in the attainment
of emission standards for heavy-duty trucks (Slodowske, 1993). Changes to diesel fuel
may include further reduction of sulfur and aromatic contents, a cetane number increase,
modified distillation properties, and use of oxygenated compounds. The emission impacts
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of any future changes in fuel properties should be assessed through continued study of on-
road emissions.

For this reason, permanent installation of continuous CO, CO,;, NO,, and
hydrocarbon analyzers in climate-controlled rooms at both ends of the Caldecott tunnel is
recommended.

7.2 Air Quality Modeling

While this research identified many of the emission impacts of reformulated gasoline, the
impacts on ozone air quality were not evaluated in this study. It is difficult to assess
changes in air quality from direct measurements of ambient pollutant concentrations
because of meteorological variability. For example, meteorological effects such as changes
in temperature, cloud cover, and atmospheric dispersion can mask changes in ozone
formation that are due to changes in gasoline composition. Alternatively, Eulerian
photochemical air quality models could be employed to estimate the ambient air quality
effects of reformulated gasoline.

Photochemical air quality models have been developed to study the complex
couplings between atmospheric chemistry, meteorology, pollutant emissions, and
formation of ozone and other air pollutants. Harley et al. (1997) used the CIT airshed
model to assess various motor vehicle emission inventory scenarios for California’s South
Coast Air Basin. The air quality impacts of changes in motor vehicle emissions that
resulted from use of reformulated gasoline in the San Francisco Bay Area can be
investigated in much the same manner.

7.3 Heavy-Duty Truck Emissions

This research indicated that heavy-duty diesel trucks contribute significantly to on-
road NOy emissions and dominate on-road emissions of fine particles. Emissions from
off-road diesel engines also contribute to air pollution problems. For instance, NOy
emissions from mobile sources are roughly divided equally among heavy-duty on-road,
heavy-duty off-road, and light-duty vehicles (Sawyer et al., 1998). Improved
characterization of emissions from off-road diesel engines is needed.

Whereas light-duty vehicle emissions have been studied extensively and controlled
stringently over the past 20 years, much less has been done to address emissions from
heavy-duty vehicles. Further study is needed of the contribution of heavy-duty diesel
engine emissions to air pollution. The distribution of emissions across the heavy-duty fleet
deserves special attention. For light-duty vehicles, small numbers of gross-polluting
vehicles contribute disproportionately to total emissions. An early assessment of the

102



heavy-duty vehicle fleet suggests that while high-emitters are found for CO and
hydrocarbons, NOy emissions are normally distributed (Countess et al., 1998). Similar
information on the distribution and overall contributions of light-duty and heavy-duty
vehicles to fine particle emissions is needed to determine appropriate emission control
strategies.

7.4 Polycyclic Aromatic Hydrocarbons

While the presence of PAH in diesel exhaust was confirmed in this study, it is not
the case that diesel exhaust is the only significant on-road source of all PAH. This study
suggests that light-duty vehicles are an important source of some of the heavier particle-
phase PAH. Further consideration is needed of the relative importance of light-duty
(gasoline) versus heavy-duty diesel engine emissions as sources of PAH.

This study found a correlation between PAH concentrations in gasoline and PAH
emission factors from light-duty vehicles. Significant brand-to-brand variability in PAH
concentrations was found among gasoline samples collected at Bay Area service stations.
This suggests that it may be possible to reformulate gasoline to reduce its PAH content, and
thus to reduce particle-phase exhaust PAH emissions. Relationships between PAH
emissions and fuel composition should be studied further for both gasoline and diesel-
powered vehicles.
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Appendix B

Composition of Gasoline Headspace Vapors
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Appendix C

Composition of Tunnel NMOC
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Appendix D

Prediction of Organic Compound Vapor Pressures
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Appendix E

Time Series Plots of Pollutant Concentrations
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